N.B.Navale

Date : 01.04.2025 **Time** : 02:23:06 Marks : 159

TEST ID: 70 CHEMISTRY

3.REDOX REACTION, REDOX REACTIONS

Single Correct Answer Type

- The oxidation number of an element in a 1. compound is evaluated on the basis of certain fuel's, Which of the following is incorrect in this respect?
 - b) The algebraic sum of The oxidation all the oxidation a) number of hydrogen numbers in a is always +1compound is zero.
 - c) An element in the In all its compounds, free or the the oxidation d) uncombined state number of fluorine is bears oxidation -1. number zero.
- 2. Among the properties given below, the set of properties shown by CN⁻ ion towards metal species is :
 - 1. Reducing; 2. Oxidising; 3. Complexation a) 1, 3 b) 1, 2, 3 c) 1, 2 d)2,3
- 3. Oxidation state of chromium

- b)+6 a)+10 d) + 2c) +3 A solution of $KMnO_4$ is reduced to MnO_2 . The 4. normality of solution is 0.6. The molarity is: a) 1.8 M b) 0.6 M
 - c) 0.1 M d) 0.2 M
- 5. Which one is not a redox titration? a) FeSO₄ vs. $K_2Cr_2O_7$ b) CuSO₄ vs. hypo c) I_2 vs. hypo d)AgNO3 vs. KCl
- 6. 0.2 g of a sample of H_2O_2 required 10 mL of $N \text{ KMnO}_4$ in a titration in the presence of H_2SO_4 . Purity of H_2O_2 is : a) 25% b)85%

7. The oxidation number of chromium in potassium dichromate is a) +2 b)+4

	c) +6	d)+8
8.	An element A in a	a compound ABD has
	oxidation number A^{n-1}	. It is oxidized by $Cr_2 O_7^{2-}$
	in acidic medium. In	the experiment 1.68 \times
	10^{-3} mole of K ₂ Cr ₂ C	$_{-}$ were used for 3.26 \times
	10^{-3} mole of ABD. Th	e new oxidation number
	of A after oxidation is	
	a) 3	(h) $3 - n$
	c) $n - 3$	d)+n
9	What is the oxidation i	h humber of As in H ₂ AsO ₂
).	7	iumber 01713 in 11371303
	2) ⊥4	h) ⊥ 3
	c) - 3	d)+2
10	How many electrons a	re involved in ovidation
10.	of $KMn\Omega$, in basic med	lium?
	a) 1	h)2
	c) 5	q) 3
11	The eq. wt of L in the	change $I_{-} \rightarrow IO_{-}^{-}$ is :
11.	a) 12 7	h) 635
	c) 25.4	d) 2 54
12	In which of the followi	ng the oxidation
14.	number of ovvgen has	heen arranged in
	increasing order?	been arranged m
	$B_2O_2 \leq KO_2 \leq O_2 \leq C_2$	$OE_{a} < KO_{a} < C$
	a) OF_{-}	b) $B_2 O_2 < O_2$
	$B_2 O_2 \leq O_2 \leq O_5 \leq O_5$	$KO_2 < O_3$
	c) $_{KO}^{KO}$	$d_{B_20}^{R_2}$
13	The oxidation number	of Cr in $K_{\alpha}Cr_{\alpha}O_{\alpha}$ is
10.	a) + 2	h)+4
	(1) + 6	d)+7
14	8σ of sulphur are hu	rnt to form SO ₂ which is
1	oxidised by Cl _o water	The solution is treated
	with BaCl _a solution	The amount of BaSO.
	nrecinitated is ·	The amount of Bubb4
	a) 1.0 mole	h) 0.5 mole
	c) 0.24 mole	d 0.25 mole
15	By using Stock notation	n the following
15.	compounds FeO Fe ₂ O	$h_{\rm c}$ CuO and MnO ₂ can be
	renresented as	3, suo una miloz cui De
	$F_{e}(II) \cap F_{e_{a}}(III)$	
	a) Ω_{n} (II) (II) Ω Mn (IV)	$Fe(III)O, Fe_2(II)O_3, Cu$
		, respectively

0₂, respectively

c) $Fe(II)O, Fe_2(IV)O_3, d) Fe(I)O, Fe_2(I)O_3,$

Page | 1

	Cu(I)O, Mn(III)O ₂ ,	$Cu(III)O, Mn(II)O_2,$
	respectively	respectively
16.	A 0.518 g sample of lin	me stone is dissolved in
	HCl and then the cal	cium is precipitated as
	CaC_2O_4 . After filteri	ng and washing the
	precipitate. it req	uires 40.0 mL of
	0.250 N KMnO₄. soluti	on acidified with H ₂ SO ₄
	to titrate is as. N	$(nO_4^- + H^+ + C_2O_4^{2-} \rightarrow$
	$Mn^{2+} + CO_2 + 2H_2O_1$	The percentage of CaO in
	the sample is :	F
	a) 54.0 %	b)27.1 %
	c) 42%	d)84%
17.	In the reaction, $I_2 + 2$	$2S_2 0_2^{2-} \rightarrow 2I^- + S_4 0_6^{2-}$
	Equivalent weight of io	dine will be equal to:
	a) Its molecular weight	b) $1/2$ of its molecular
	a) its molecular weight	weight
	c) 1/4 of its molecular	d)Twice the molecular
	weight	weight
18	The oxidation number	of Xe in XeF, and XeO ₂
10.	is	0111011111014
	a) $+6$	(b) + 4
	c) $+1$	d)+3
19.	In the following redox	reaction.
	$Cr_2 O_7^{2-} + Fe^{2+} \rightarrow Fe^{3+}$	$^{+} + Cr^{3+}$
	$1 \text{ male of } Cr \Omega^2 = \text{ avidin}$	1 01
	-1 more of Uf ₂ U ₇ - 0x1019	Ses
	a) 1 mole of Cr_2O_7 oxidis	ses b) 3 moles of Fe ^{2*}
	a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+}	ses b) 3 moles of Fe ^{2*} d) 6 moles of Fe ²⁺
20.	a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co	ses b) 3 moles of Fe ^{2*} d) 6 moles of Fe ²⁺ nverted into ammonium
20.	a) 1 mole of Cr_2O_7 oxidis a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix	ses b) 3 moles of Fe ^{2*} d) 6 moles of Fe ²⁺ nverted into ammonium ass of nitrate ion in the
20.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent mar- reaction would be:	ses b) 3 moles of Fe ^{2*} d) 6 moles of Fe ²⁺ nverted into ammonium ass of nitrate ion in the
20.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent marries reaction would be: a) 6.20	ses b) 3 moles of Fe ^{2*} d) 6 moles of Fe ²⁺ nverted into ammonium ass of nitrate ion in the b) 7.75
20.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co- ion. The equivalent mar- reaction would be: a) 6.20 c) 10.5	ses b) 3 moles of Fe ^{2*} d) 6 moles of Fe ²⁺ nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0
20. 21.	a) 1 mole of Cr ₂ O ₇ oxides a) 1 mole of Fe ²⁺ c) 4 moles of Fe ²⁺ The anion nitrate is co ion. The equivalent mare reaction would be: a) 6.20 c) 10.5 The oxidation state of s	b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2+} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is
20. 21.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co- ion. The equivalent mar- reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4	b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2+} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6
20. 21.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2+} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7
20. 21. 22.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co- ion. The equivalent mar- reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2+} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 xidation numbers of the
20. 21. 22.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid two types of sulphur at	b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 sidation numbers of the coms in Na ₂ S ₄ O ₆ is
20. 21. 22.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent mar- reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the ox two types of sulphur at a) 4	b) 3 moles of Fe ^{2*} d) 6 moles of Fe ²⁺ nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 sidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5
20. 21. 22.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid two types of sulphur at a) 4 c) 6	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2+} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 sidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7
20.21.22.23.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent mar- reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the ox- two types of sulphur at a) 4 c) 6 In alkaline condition Ki	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2+} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 sidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows :
20.21.22.23.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid two types of sulphur at a) 4 c) 6 In alkaline condition Ki 2KMnO ₄ + 2KOH \rightarrow 2	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 kidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows : EK ₂ MnO ₄ + H ₂ O + O.
20.21.22.23.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid two types of sulphur at a) 4 c) 6 In alkaline condition Ki 2KMnO ₄ + 2KOH \rightarrow 2 The eq. wt. of KMnO ₄ is	b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 sidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows : $EK_2MnO_4 + H_2O + O.$
20.21.22.23.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co- ion. The equivalent mar- reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the or- two types of sulphur at a) 4 c) 6 In alkaline condition Ki 2KMnO ₄ + 2KOH \rightarrow 2 The eq. wt. of KMnO ₄ is a) 52.7	b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 kidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows : $EK_2MnO_4 + H_2O + O.$ s: b) 158
20.21.22.23.	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid two types of sulphur at a) 4 c) 6 In alkaline condition Ki 2KMnO ₄ + 2KOH \rightarrow 2 The eq. wt. of KMnO ₄ is a) 52.7 c) 31.6	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 sidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows : :K ₂ MnO ₄ + H ₂ O + O. S: b) 158 d) 79
 20. 21. 22. 23. 24. 	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid two types of sulphur at a) 4 c) 6 In alkaline condition KI 2KMnO ₄ + 2KOH \rightarrow 2 The eq. wt. of KMnO ₄ is a) 52.7 c) 31.6 Oxalic acid on reacting	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 sidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows : cK ₂ MnO ₄ + H ₂ O + O. s: b) 158 d) 79 with acidified KMnO ₄ is
 20. 21. 22. 23. 24. 	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid two types of sulphur at a) 4 c) 6 In alkaline condition Ki 2KMnO ₄ + 2KOH \rightarrow 2 The eq. wt. of KMnO ₄ is a) 52.7 c) 31.6 Oxalic acid on reacting oxidised to :	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 sidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows : EK ₂ MnO ₄ + H ₂ O + O. S: b) 158 d) 79 with acidified KMnO ₄ is
 20. 21. 22. 23. 24. 	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the oxid two types of sulphur at a) 4 c) 6 In alkaline condition KI 2KMnO ₄ + 2KOH \rightarrow 2 The eq. wt. of KMnO ₄ is a) 52.7 c) 31.6 Oxalic acid on reacting oxidised to : a) CO and H ₂	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 kidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows : EK ₂ MnO ₄ + H ₂ O + O. S: b) 158 d) 79 with acidified KMnO ₄ is b) CO ₂ and H ₂
 20. 21. 22. 23. 24. 	a) 1 mole of Cr_2O_7 oxides a) 1 mole of Fe^{2+} c) 4 moles of Fe^{2+} The anion nitrate is co ion. The equivalent matrix reaction would be: a) 6.20 c) 10.5 The oxidation state of s a) +4 c) +5 The difference in the or two types of sulphur at a) 4 c) 6 In alkaline condition KI 2KMnO ₄ + 2KOH \rightarrow 2 The eq. wt. of KMnO ₄ is a) 52.7 c) 31.6 Oxalic acid on reacting oxidised to : a) CO and H ₂ c) CO ₂ and H ₂ O	ses b) 3 moles of Fe^{2*} d) 6 moles of Fe^{2*} nverted into ammonium ass of nitrate ion in the b) 7.75 d) 21.0 sulphur in H ₂ S ₂ O ₇ , be is b) +6 d) +7 kidation numbers of the coms in Na ₂ S ₄ O ₆ is b) 5 d) 7 MnO ₄ reacts as follows : EK ₂ MnO ₄ + H ₂ O + O. S: b) 158 d) 79 with acidified KMnO ₄ is b) CO ₂ and H ₂ d) CO and H ₂ O

oxalate gives oxidation products containing :

	c) Both (a) and (b)	d)None of these
26.	Which of the following	reaction has the
	underlined substance	been reduced?
	<u>Carbon monoxide</u> + Co	pper oxide <u>Copper oxide</u> + Hydrochlor:
	a) —> Carbon	b)
	dioxide + Copper	
	<u>Hydrogen</u> + Iron	Steam + Iron \rightarrow Iron
	c) oxide \rightarrow Iron +	d) oxide + Hydrogen
	Water	
27.	In the reaction, C	$r_2O_7^- + 14H^+ + 6I^- \rightarrow$
	$2Cr^{3+} + 3H_2O + 3I_2$, T	The eq.wt. of Cr^{3+} is :
	a) $\frac{\text{mol. wt.}}{2}$	b) $\frac{\text{at. wt.}}{\text{c}}$
	3 at wt	6 mol wt
	c) $\frac{dd}{3}$	d) $1000000000000000000000000000000000000$
28.	The apparatus in wh	ich standard solution is
	prepared is known as	· · · · · · · · · · · · · · · · · · ·
	a) Measuring flask	b) Round bottom flask
	c) Burette	d) None of these
29.	In the ionic equation,	,
	$BiO_3^- + 6H^+ + xe^$	$\rightarrow Bi^{3+} + 3H_2O$
	The values of <i>x</i> is	2
	a) 6	b)2
	c) 4	d)3
30.	One mole of acidified	$K_2Cr_2O_7$ on reaction
	with excess KI will libe	eratemole(s) of I ₂ .
	a) 6	b) 1
	c) 7	d)3
31.	$Cr_2O_7^{2-} + 2I^- + 14H^+$	$\rightarrow I_2 + 2Cr^{3+} + 7H_2O$
	Which ions are not in l	palanced position in
	above reaction?	
	a) H ⁺ and H ₂ O	b) $Cr_2 O_7^2$ and Cr^{3-}
	c) I ⁻ and I ₂	d)all are balanced
32.	In the reaction,	
	$MnO_4^{-2}(aq) + Br^{-1}(aq)$	$q) \rightarrow MnO_2(s) +$
	$BrO_3^{-1}(aq)$, the correct	t change in oxidation
	number of the species	involved is
	a) Br ⁺⁵ to Br ⁻¹	b) Mn^{+7} to Mn^{+2}
	c) Mn ⁺⁷ to Mn ⁺³	d)Br ⁻¹ to Br ⁺⁵
33.	Which of the following	; is a redox reaction?
	NaCl + KNO ₃ →	$CaC_2O_4 + 2HCI \rightarrow$
	^{a)} NaNO ₃ + KCl	$CaCl_2 + H_2C_2O_4$
	$Ca(OH)_{2} +$	$2 \text{ K}[\text{Ag}(\text{CN})_2] +$
	c) $2NH_4Cl \rightarrow CaCl_2 +$	d)Zn \rightarrow 2Ag +
	$2NH_3 + 2H_2O$	$K_2[Zn(CN)_4]$
34.	In an oxidation proces	s for a cell $M_1 \rightarrow M_1^{n+} +$

34. In an oxidation process for a cell $M_1 \rightarrow M_1^{n+} + ne$, the other metal (M_2) being univalent showing reduction takes up theelectrons to

	complete redox reaction	on.
	a) (<i>n</i> − 1)	b)1
	c) n	d)2
35.	Oxidation number of 'I	N' in N ₃ H(hydrazoic
	acid) is	
	1	L) + 2
	$a_{j} = \frac{1}{3}$	DJ+3
	c) 0	d)-3
36.	Equivalent mass of IO2	\bar{f}_{4} when it is converted to
	I ₂ in acid medium :	
	a) <i>M</i> /6	b) <i>M</i> /7
	c) <i>M</i> /5	d) <i>M</i> /4
37.	Which of the following	arrangements
	represents increasing	oxidation number of the
	central atom?	
	$cr0_2$,	h) $C = Cr \Omega^{2-}$ Mn Ω^{-} Cr
	ClO_3^- , CrO_4^2 , MnO_4^-	0)0103,0104,01
	c) CrO_{2}^{-} , ClO_{3}^{-} , MnO_{4}^{*} , CrO_{2}^{-}	$r(d) CrO_4^{2-}, MnO_4^{-}, CrO_2^{-}, C$
38.	Eq.wt. of NH_3 in, NH_3 -	$+0_2 \rightarrow NO + H_2O$ is:
	a) 3.4	b)17
	c) 8.5	d)None of these
39.	A group of methods	of quantitative chemical
	analysis involving the	measurement of volume
	of reacting substance i	s known as :
	a) Gravimetric analysis	s b) Volumetric analysis
	c) Both (a) and (b)	d) None of the above
40.	In which of the followi	ng reactions, chlorine
	acts as an oxidising age	ent?
	(I) $CH_3CH_2OH + CI_2$	$CH_3CHO + HCI$
	$(II) CII_3 CII + CI_2$	$CU_3CHO + HCI$
	$(III) \cup \Pi_4 + \cup I_2$ The correct encryon is	$CH_3CI + HCI$
	a) (i) only	h) (ii) only
	a) (i) only (iii)	d(i) (ii) and (iii)
<i>4</i> .1	In the reaction	
т1.	Ag $0 + H_1 0 \rightarrow 2Ag$	$+ H_{0} + 0_{1}$
	H_2O_2 acts as	1 1120 1 02
	a) reducing agent	h) oxidising agent
	c) bleaching agent	d) None of these
42.	What is the oxidation r	number of Mn in MnO_4^{2-}
	ion?	
	a) +6	b)+8
	c) -8	d)-6
43.	Number of K ⁺ ions	and mole of K^+ ions
	present in 1 litre of $\frac{N}{2}$	KMnO, acidified solution
	present in 1 nere er 5	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	2 h) 2 4 v 10 ²² and 0.04
	200 and 6 022	60.22×10^{23} and 60.22×10^{23} and
	c) $\times 10^{23}$	d) $_{200}^{0.023 \times 10^{-3} \text{ and}}$
4 .1.	A IV Observe the following	reaction
1 T.	observe the following	1 Cuction,

 $2NO_2(g) + 2OH^-(aq) \rightarrow NO_3^-(aq) + H_2O(I) +$ $NO_2^-(aq)$ In this reaction, OH⁻is oxidised to OH⁻is reduced to b) _{H2}0 a) H₂0 $NO_2(g)$ is reduced to $NO_2(g)$ is reduced to c) $NO_2^-(aq)$ and d) $NO_3^-(aq)$ and oxidised to $NO_3^-(aq)$ oxidised to $NO_2^-(aq)$ 45. How many milligram of iron (Fe^{2+}) are equal to 1 mL of $0.1055 N K_2 Cr_2 O_7$ equivalent? b) 0.59 mg a) 5.9 mg c) 59 mg d) 59 \times 10⁻³ mg 46. The eq. wt. of Fe₃O₄ in , Fe₃O₄ + KMnO₄ \rightarrow $Fe_2O_3 + MnO_2$ is: a)*M*/6 b)*M* c) 2*M* d)*M*/3 47. Oxidation states of *X*, *Y*, *Z* are +2, +5 and -2respectively. Formula of the compound formed by these wii be a) $X_2 Y Z_6$ b) XY_2Z_6 d) X_3YZ_4 c) XY_5 48. KMnO₄ acts as indicator in its redox titrations. a) Self b) External c) Internal d)Not an 49. For the redox reaction, $MnO_{4}^{-} + C_{2}O_{4}^{2-} + H^{+} \rightarrow Mn^{2+} + CO_{2} + H_{2}O_{4}$ the correct coefficients of the reactants for the balanced reaction are MnO_{4}^{-} $C_{2}O_{4}^{2-}$ H^+ a) 2 5 16 b)16 2 5 c) 5 16 2 d)2 16 5 50. The oxidation number of sulphur in Na₂ S_2O_3 is a)+1 b) + 2c) +3 d)-3 51. The oxidation state of I in IPO_4 is a)+1 b)+3c) +5 d)+7 52. I⁻ reduces IO₃⁻ to I₂ and itself oxidised to I₂ in acidic medium. Final reaction is a) $I^{-} + IO_{3}^{-} + 6H^{+} \rightarrow I_{2} + 3H_{2}O$ b) $I^{-} + IO_{3}^{-} \rightarrow I_{2} + O_{3}$ c) $\frac{5I^- + IO_3^- + 6H^+ \rightarrow d}{3l_2 + 3H_2O}$ None of the above 53. Which combination appears odd with respect to oxidation number per atom of the underlined? a) H_2SO_1 , $H_2S_2O_6$, K_2Cb) CrO_4 , CrO_4^{2-} , SO_4^{2-}

c) Both (a) and (b)

d)None of the above

54.	What weight of	HNO3 is nee	eded to con	vert 5 g
	of iodine into	iodic acid	according	to the
	reaction, $I_2 + HI$	$NO_3 \rightarrow HIO$	$_{3} + NO_{2} + I$	$H_20?$
	a) 12.4 g	b)24	.8 g	
	c) 0.248 g	d)49	9.6 g	

- 55. The equivalent weight of $SnCl_2$ in the reaction, $SnCl_2 + Cl_2 \rightarrow SnCl_4$ is :
 - a) 49 b) 95
 - c) 45 d) 59
- 56. $C_2H_6(g) + nO_2 \rightarrow CO_2(g) + H_2O(r)$ In this equation, ratio of the coefficients of CO_2 and H_2O is Ratio of the coefficient of CO_2 and H_2O is 4: 6 and 2: 3.
 - a) 1:1 b) 2: 3
 - c) 3:2 d) 1:3
- 57. Which one of the following reaction is possible at anode?

a)
$$F_2 + 2e^- \rightarrow 2F^-$$
 b) $2H^+ + \frac{1}{2}O_2 + 2e^-$
 $\rightarrow H_2O$
 $2Cr^{3+} + 7H_2O$
c) $\rightarrow Cr_2O_7^{2-} + 14H^+$ d) $Fe^{2+} \rightarrow Fe^{3+} + e^+$
 $+ 6e^-$

- 58. In the following reaction
 - $M^{x+} + \text{MnO}_4$ $MO_3 + \text{Mn}^{2+} + \frac{1}{2}O_2$, If one mole of MnO₄ oxidises 2.5 moles of M^{x+} then the value of x is

a) 5	b) 3
c) 4	d) 2

- 59. What volume of 0.1 *M* KMnO₄ is needed to oxidise 100 mg of FeC₂O₄ in acidic solution?
 a) 4.1 mL
 b) 8.2 mL
 c) 10.2 mL
 d) 4.6 mL
- 60. Which of the following acts as both an oxidizing as well as reducing agent?
 a) HNO₃
 b) HNO₂
 c) HI
 d) H₂SO₄
- 61. In which among the following compounds, oxidation number of nitrogen is +5?
 a) N₂O
 b) N₂O₃
 c) NO₂
 d) HNO₃
- 62. When the ion $Cr_2O_7^{2-}$ acts as an oxidant in acidic aqueous solution the ion Cr^{3+} is formed. How many mole of Sn^{2+} would be oxidised to Sn^{4+} by one of $Cr_2O_7^{2-}$ ions? a) 2/3 b) 3/2

63. Oxidation states of the metal in the minerals haematite and magnetite, respectively, are

	a) II, III in haematite	b) II, III in haematite
	and III in magnetite	and II in magnetite
	c) II in haematite and	d)III in haematite and
	II, III in magnetite	II, III in magnetite
64.	The coefficients of I ⁻ , I	$0_{\overline{3}}$ and H ⁺ in the
	balanced redox reactio	$n. I^- + IO_2^- + H^+ \rightarrow$
	$I_2 + H_20$; are respectiv	velv
	a) 5 1 6	b) 156
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	d) 5 6 1
65	When K_{2} (r. 0- is conv	erted into K_{a} (rO, the
05.	change in evidation nu	wher of chromium is
	a) 0	
~ ~	CJ /	
66.	What is the oxidation n	number of gold in the
	complex [AuCl ₄] ¹⁻ ?	
	a) +4	b)+3
	c) +2	d)+1
67.	Which one of the follow	ving cannot acts as a
	reducing agent?	
	a) CO_2	b) SO ₂
	c) NO_2	d)ClO ₂
68.	Nitric oxide acts as a re	educing agent in the
	reaction	
		$2NO + 3H_2 +$
	a) $4NH_2 + 5U_2 \rightarrow a$	b) $4H_20 \rightarrow 2NO_5^- +$
	$2NO + 6H_2O$	$6I + 8H^+$
	$2N0 + H_2SO_3 \rightarrow$	$_{12}$ 2NO + H ₂ S \rightarrow
	$^{\rm CJ}N_20 + H_2SO_4$	$^{(1)}N_2O + S + H_2O$
69.	What weight of HNO ₃	is needed to convert 5
	g I ₂ into HIO ₃ , HNO ₃ –	→ NO?
	a) 4.13 g	b)24.8 g
	c) 6.2 g	d) 10.2 g
70.	In which of the following	ng reaction, oxidation
	number of Cr has been	affected?
	$2Cr\Omega^{2-} + 2H^+ \rightarrow$	$(r_{2}O_{2}^{2} + 2OH) \rightarrow$
	a) $Cr \Omega^{2-} + H \Omega$	b) $2CrO^{2-} + HO$
	(NH) $(r O)$	$200_4 + 11_20$
	c) $(N \Pi_4)_2 C \Gamma_2 O_7 \rightarrow$	d) $(r_0^2 - r_1^2 + 200)$
71	$N_2 + Cr_2 O_3 + 4H_2 O_3$	$CrO_2^2 + 2HCI$
/1.	In the compounds KMr	10_4 and $K_2 Cr_2 O_7$, the
	highest oxidation state	is of the element
	a) Mn	b)K
	c) 0	d)Cr
72.	Volumetric estimation	of CuSO ₄ using hypo as
	intermediate solution	along with KI solution
	and starch as indicator	is an example of :
	a) Redox titration	b)Acid-base titration
	c) Precipitation	d)None of these
	titration	

73. What volume of $2N \text{ K}_2\text{Cr}_2\text{O}_7$ solution is required to oxidise 0.81 g of H_2S in acidic

	medium?		
	a) 47.8 mL	b) 23.8 mL	
	c) 40 mL	d) 72 mL	
74.	Corrosion of iron is :	5	
	a) Redox process	b) Neutralization	
	j i F	process	
	c) Precipitation	d) None of these	
	nrocess		
75	White phosphorus read	rts with caustic soda the	
70.	products are PH _o and N	$V_{\rm a} = P_{\rm a}$ This reaction	
	is an example of	tangi og. inis reaction	
	a) Oxidation	h)Reduction	
	c) Disproportionation	d)Neutralisation	
76	In which of the followi	a reactions hydrogen	
70.	is acting as an oxidising	agont?	
	a) With Li to form LiH	b) With I to give HI	
	a) With S to give U.S.	d) None of the above	
77	C) with 5 to give $\Pi_2 S$	uj Nolle of the above	
//.	nreduct formed by the	reaction between VI	
	and acidified notacijum	n dichromata colution ic	
	allu aciullieu potassiuli		
	$a_{j}+3$	D) + 2	
70	$C_{J} + 0$	uj+4	
78.	Which of the following reaction involves		
	a) $NaCl + UDr$	b) $A_{\alpha}D_{\alpha} + UNO$	
	\rightarrow NaCI + HDI	$Agd1 + HNO_3$	
	c) $H_2 + Br_2 \rightarrow 2HBr$	d) $N_2 S_0 + H_0$	
79	In which of the followi	$7 \text{ Ma}_2 \text{ SO}_4 + \text{ Ma}_2 \text{ O}_5$	
7.7.	as a reducing agent?	ing reactions, m202 acts	
	HOC1 +	$Mn^{2+} +$	
	H^+	$0H^+$	
	$^{a}H_2O_2 \rightarrow H_3O^+ +$	$^{\rm DJ}{\rm H}_2{\rm O}_2 \rightarrow {\rm Mn}^{4+} +$	
	$Cl^{-} + O_2$	20H ⁻	
	$2Fe^{2+} +$	PbS(s) +	
	c) $H_2O_2 \xrightarrow{OH^-} 2Fe^{3+} +$	d) _{4H₂O₂(aq) $\xrightarrow{H^+}$ PbSO₄}	
	20H ⁻	$4H_2O(t)$	
80.	The oxidation state of S	S-atoms in $S_4 O_8^{2-}$ from	
	left to right are respect	ively	
	0 0	-	
	0— <u><u>s</u>—s—s—<u>s</u>—(</u>).	
	0 0		
	a) +3, +1, +1, +3	b) $+4$, $+1$, $+1$, $+4$	
	c) +5, 0, 0, +5	d)+6, 0, 0, +6	
81.	Hot concentrated sulph	iuric acid is a	
	moderately strong oxic	lising agent. Which of	
	the following reaction	does not show oxidising	
	behaviour?		
	a) Cu + $2H_2SO_4 \rightarrow$	b) $3 \text{ S} + 2 \text{H}_2 \text{SO}_4 \rightarrow$	

	$\begin{array}{c} \text{CuSO}_{4} + \text{SO}_{2} + \\ \text{2H}_{2}\text{O} \end{array}$	$3SO_2 + 2H_2O$
	$\begin{array}{c} C + 2H_2SO_4 \rightarrow \\ CO_2 + 2SO_2 + 2H_2O_4 \end{array}$	
82.	The equivalent weight	of iron in Fe_2O_2 would
° <u>-</u> .	be :	
	a) 18.6	b)28
	c) 56	d)11
83.	In which of the following	ng. the oxidation
	number of oxygen has	been arranged in
	increasing order?	J
	$OF_2 < KO_2 < BaO_2$	$_{1}$ BaO ₂ < KO ₂ < O ₃
	a) < 0 ₃	$bJ < OF_2$
	$BaO_2 < O_3 < OF_2 <$	d)None of these
	$C) KO_2$	
84.	For the redox reaction,	
	$Zn + NO_3^- \rightarrow Zn^{2+} + N$	IH₄ ⁺
	In basic medium, coeffi	cients of Zn, NO_3^- and
	OH ⁻ in the balanced ec	uation are respectively.
	a) 7,4,1	b)4,1,10
	c) 1,4,10	d) 4,1,7
85.	Cerric ammonium sulp	hate and potassium
	permanganate are used	d as oxidising agents in
	acidic medium for oxid	ation of ferrous
	ammonium sulphate to	ferric sulpahte. The
	ratio of number of mole	es of cerric ammonium
	sulphate required per n	nole of ferrous
	ammonium sulphate to	the number of moles of
	KMnO ₄ required per m	ole of ferrous
	ammonium sulphate, is	5
	a) 5.0	b)0.2
	c) 0.6	d)2.0
86.	In the reaction, SO_2 +	$2H_2S \rightarrow 3S + 2H_2O$ the
	substance that oxidizes	s is,
	a) H_2S	$b)SO_2$
07	CJS	dJH ₂ U
87.	The couple having oxid	lised and reduced forms
	of a substance taking p	art in an oxidation or
	reduction half-reaction	lis called
	a) reduced couple	d) None of the choice
00	C) reduced couple	a jnone of the above
00.	Allount of oxalic actu j	titration with VMnO
	solution in the presence	a of H SO The titration
	solution in the present	$e \text{ of } \pi_2 \text{ so}_4$. The dualout in sult when carried out in
	the presence of UCL be	suit when tallied out In
	a) Ovidises ovalic acid	h) Gets ovidized by
	to carbon diovido	oxalic acid to
	and water	chlorine

c) Furnishes H⁺ ions in d) Reduces

addition to those permanganate to Mn²⁺ from oxalic acid

89. Oxidation number of sulphur in Caro's acid is

a) +6	b)+4
c) +8	d)+7

90. Both oxidation and reduction takes place in

- b) $\frac{\text{HBr} + \text{AgNO}_3 \rightarrow}{\text{AgBr} + \text{HNO}_3}$ a) $\frac{\text{NaBr} + \text{HCl}}{\text{NaCl} + \text{HBr}}$ c) $H_2 + Br_2 \rightarrow 2HBr$ d) $\frac{CaO + H_2SO_4}{CaSO_4 + H_2O}$
- 91. In the reduction of dichromate by Fe (II), the number of electrons involved per chromium atom is :
 - a) 3 b)1
 - c) 2 d)4
- 92. In an experiment 50 mL of 0.1 *M* solution of a salt reacted with 25 mL of 0.1 M solution of sodium sulphite. The half equation for the oxidation of sulphite ion is :

 $SO_3^{2-}(aq) + H_2O(l)$

$$\rightarrow$$
 SO₄²⁻(aq) + 2H⁺(aq) + 2e⁻

If the oxidation number of metal in the salt was 3, what would be the new oxidation number of metal?

a) Zero	b)1
c) 2	d)4

93. What weight of HNO_3 is required to make 1 litre of 2 N solution to be used as an oxidising agent in the reaction? $3Cu + 8HNO_3 \rightarrow$ $3Cu(NO_3)_2 + 2NO + 4H_2O$ a) 63 g b)21 g

c) 42 g	d)84 g
Starch gives	blue colour with :
a) KI	b)I ₂

94.

	b) I ₂

c) Cl_2 d) None of these

95. In the equation, $SnCl_2 + 2HgCl_2 \rightarrow Hg_2Cl_2 +$ SnCl₄. The equivalent weight of stannous chloride (molecular weight = 190) will be : a) 190 b)95 c) 47.5

	-
	d)154.5

- 96. A good indicator must possess the following characteristics :
 - b) The colour change a) The colour change should be clear should be sharp
 - c) It must be sensitive d)All of the above to the equivalent point
- 97. The oxidation number of xenon in $XeOF_2$ is a) Zero b)2 c) 4 d)3
- 98. 25 mL of 0.50 M H₂O₂ solution is added to 50 mL of 0.20 *M* KMnO₄ in acidic solution. Which of the following statements is true? b) $\frac{0.005 \text{ mole of}}{\text{KMnO}_4}$ are left a) 0.010 mole of oxygen is liberated c) 0.030 g atom of 0.0025 mole H₂O₂ oxygen gas is d) does not react with evolved KMnO₄ 99. In the titration of CuSO₄ vs. Hypo in presence of KI, which statement is wrong? b) I_2 with starch gives blue colour a) It is iodometric titration CuSO₄ is reduced to d)The solution before c) white Cu_2I_2 during titration, on addition redox change of KI appears blue 100. Choose the disproportionation reaction among the following redox reactions. $P_4(s) +$ a) $\frac{3Mg(s) + N_2(g) \rightarrow}{Mg_3 N_2(s)}$ b) $\frac{3NaOH(aq) +}{3H_2O(l) \rightarrow PH_3(g) +}$ $3NaH_2PO_2(aq)$ $Cr_2O_3(s) +$ c) $\begin{array}{c} \operatorname{Cl}_2(g) + 2\operatorname{KI}(\operatorname{aq}) \to & \operatorname{Cl}_2O_3(s) + \\ \operatorname{2KCl}(\operatorname{aq}) + \operatorname{I}_2(s) & \operatorname{d}) 2\operatorname{Al}(s) \to \operatorname{Al}_2O_3(s) + \\ \end{array}$ 2Cr(s)101. The value of n in the following equation is $Cr_2O_7^{2-} + 14H^+ + nFe^{2+} \rightarrow 2Cr^{3+} + nFe^{3+} +$ 7H₂0 a)4 b)3 c) 7 d)6 102. Equivalent mass of $Na_2S_2O_3$ in its reaction with I_2 is equal to : a) Molar mass b) Molar mass / 2 c) Molar mass / 3 d)Molar mass / 4 103.1 mole of chlorine combines with a certain weight of a metal giving 111 g of its chloride. The atomic weight of the metal (assuming its valency to be 2) is : a)40 b)20 d) None of these c) 80 104.100 mL of 0.1 M solution of a reductant is diluted to 1 litre, which of the following changes? a) Molarity b) Millimole c) Milliequivalent d) None of these
- 105. The oxidation state of a metal in a compound is represented according to the notation which is known as

a) Alfred stock	b) German stock
c) Stock notation	d) Haworth stock
106.Titre value is the	volume of titrant used for a

definite amount of unknown reagent at its : 114. Which of the following is not an example of a) Equivalence point redox reaction? b) End point c) Neutralization point d) All of these 107.2 mole of $FeSO_4$ are oxidized by 'X' mole of KMnO₄ whereas 2 mole of FeC₂O₄ are oxidized by 'Y'mole of KMnO₄. The ration f 'X' and 'Y' is 115. Which of the following acts as an oxidising as b)1:2 a)1:3 well as reducing agent? c) 1:4 d)1:5 a) Na₂O b) Na_2O_2 108.A compound contains atoms of three elements c) NaNO₃ d)NaNO₂ A, B and C. If the oxidation number of A is +2, B 116.In the reaction, $H_2O_2 + Na_2CO_3 \rightarrow Na_2O_2 +$ is +5 and that of C is -2, then possible formula $CO_2 + H_2O$ the substance undergoing oxidation of the compound is is a) $A_2(BC_3)_2$ b) $A_{3}(BC_{4})_{2}$ b) Na_2CO_3 a) $H_2 O_2$ c) $A_3(B_4C)_2$ d) ABC₂ c) Na_2O_2 d) None of these 117. The oxidation number of Cr in CrO_5 is 109. The coefficients w, x, y, z in the reaction $wCr_2O_7^{2-} + xFe^{2+} \rightarrow yCr^{3+} + zFe^{3+} + H_2O$ b)+5 a)+3 w x y z d)0 c) +6 a) 1, 2, 6, 6 b) 6, 1, 2, 4 118. Arrange the following as increase in oxidation c) 1, 6, 2, 6 d)1, 2, 4, 6 number $(i)Mn^{2+}$ 110. Which of the following is a redox reaction? (ii) MnO_2 b) $\frac{\text{CaC}_2\text{O}_4 + 2\text{HCl}}{\text{CaCl}_2 + \text{H}_2\text{C}_2\text{O}_4}$ a) $\operatorname{NaCl} + \operatorname{KNO}_3 \rightarrow$ NaNO₃ + KCl (iii) KMnO₄ (iv) K_2MnO_4 a) (i)>(ii)>(iii)>(iv) b) (i)<(ii)<(iv)<(iii) $Ca(OH)_{2} +$ $2 K[Ag(CN)_2] +$ c) (ii) < (iii) < (i) < (iv) d) (iii) > (iv) > (iv) > (ii) c) $2NH_4Cl \rightarrow CaCl_2 + d)Zn \rightarrow 2Ag +$ 119. The number of mole of ferrous oxalate oxidised $2NH_3 + 2H_2O$ $K_2[Zn(CN)_4]$ by one mole of KMnO₄ is: 111.Consider the following reaction. a) 1/5 b)3/5 CHO c) 2/3 d)5/3+ OH-→ 120. What volume of 0.40 $M \text{ Na}_2\text{S}_2\text{O}_3$ would be CH₂OH required to react with the I_2 liberated by Select the incorrect statement. adding excess of KI to 50 mL of 0.20 M CuSO₄ b) It is intermolecular a) It is a solution? disproportionation redox reaction. a) 12.5 mL b)25 mL reaction. c) 50 mL d)2.5 mL CHO 121. The number of mole of oxalate ions oxidized by OH⁻ is a reducing as is a reducing as well as $\operatorname{oxidisingleteft} MnO_4^-$ ion is: c) well as oxidising СН́О a) 1/5 b)2/5 agent. d)5 c) 5/2 112. Oxidation state of oxygen in H_2O_2 is 122. How many gram of I_2 are present in a solution a) – 1 b) + 2which requires 40 mL, of 0.11 N $Na_2S_2O_3$ to c) $+\frac{1}{2}$ react with it, $S_2 O_3^{2-} + I_2 \rightarrow S_4 O_6^{2-} + 2I^{-?}$ d) - 2b) 0.558 g a) 12.7 g 113.In the reaction, c) 25.4 g d)11.4 g $3Br_2 + 6CO_3^2 + 3H_2O \rightarrow 5Br^- + BrO_3^- +$ 123. Titration of KI with H_2O_2 in presence of acid is 6HCO3 a: a) bromine is oxidised b) bromine is reduced a) Clock reaction b) Redox reaction and the carbonate and the carbonate c) Intermolecular d)All of these radical is reduced radical is oxidised redox c) bromine is neither d) bromine is both 124.In the reaction, $VO + Fe_2O_3 \rightarrow FeO + V_2O_5$. reduced nor reduced and oxidised The eq.wt. of V_2O_5 is equal to its : oxidised

	a) mol. wt.	b)mol. wt./8						
	c) mol. wt./6	d)None of these						
125	125.What is the oxidation state of P in $Ba(H_2PO_2)_2$?							
	a) +1	b)+2						
	c) +3	d)-1						
126	In acidic medium, H ₂ O	₂ changes $Cr_2 O_7^{2-}$ to						
	CrO_5 which has two (-	-0 - 0 - 0 bonds.						
	Oxidation state of Cr in	1 CrO ₅ is						
	a) +5	b)+3						
	c) +6	d)-10						
127	.MnO, is a good oxidisi	ng agent in different						
	medium changing to	0 0						
	$Mn0_4^- \rightarrow Mn^{2+} \rightarrow Mr$	$10^{2-}_{4} \rightarrow MnO_{2}$						
	Changes in oxidation n	umher respectively are						
	a) 1 3 4 5	h) 5 4 3 2						
	(1) = (1)	d) $2 6 4 3$						
129	Which of the following	is the example of a						
120	disproportionation rea	ns the example of a						
	$C_{2}C_{1} \longrightarrow C_{2}C_{2} \longrightarrow C_{2}C_{2}$	$2HCuCl \rightarrow Cu \perp$						
	a) $(aUU_3 \rightarrow CaU + a)$	b) $_{Cu^{2+} + 4Cl^{-} + 2Ul^{+}}^{2Ul^{+}}$						
	CO_2	$CU + 4CI + 2\Pi$						
	c) $PCl_5 \rightarrow PCl_3 + Cl_2$	d) 2H_2 S + SU ₂ \rightarrow						
100		$35 \pm 2H_2U$						
129	$H_{12} + H_2 \rightarrow 2HU + 3$	S in this reaction,						
	oxidation state of chlor	rine changes from						
	a) zero to -1	b) 1 to zero						
4.0.0	c) zero to 1	d) remains unchanged						
130	The eq. wt. of K_2CrO_4	as an oxidising agent in						
	acid medium is :							
	a) (mol. wt.)/2	b) $(2 \times \text{mol. wt.})/3$						
	c) (mol. wt.)/3	d) (mol. wt.)/6						
131	.The number of electro	ons lost or gained during						
	the change $Fe + H_2O$ -	$\rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2 \text{ is}$						
	a) 2	b)4						
	c) 6	d)8						
132	.What weight of FeSO ₄	(mol. wt. =152) will be						
	oxidised by 200 mL of	normal KMnO ₄ solution						
	in acidic solution?							
	a) 30.4 g	b) 60.8 g						
	c) 121.6 g	d) 15.8 g						
133	.For redox reaction,							
	$MnO_4^- + C_2O_4^{2-} + H^+ -$	$\rightarrow Mn^{2+} + CO_2 + H_2O$						
	coefficient of reactants	in balanced states are						
	MnO_{4}^{-} $C_{2}O_{4}^{2-}$ H ⁺							
	a) 2 5 16	5b)16 5 2						
	c) 5 16 2	d)2 16 5						
134	.What is the normality	of a KMnO $_{4}$ solution to						
	be used as an oxidant in acid medium, which							
	contain 15.8 g of the compound in 100 mL of							
	solution? Mol. wt. of K	MnO_4 is 158 :						
	a) 2 <i>N</i>	b) 3 <i>N</i>						
		-						

c) 4 <i>N</i>	d) 5 <i>N</i>
135.The eq. wt. of Na ₂ S ₂	O_3 as reductant, in the
reaction. Na	$_{2}S_{2}O_{2} + 5H_{2}O + 4Cl_{2} \rightarrow$
$2NaHSO_4 + 8HCl$:	2-2-322
a) (Mol wt)/1	b) (Mol. wt)/2
c) (Mol. wt.)/6	d) (Mol. wt.)/2
CJ(MOI. WL)/O	u) (MOI. WL.)/O
136.A substance, that by	its snarp colour change
indicates the complet	ion of reaction is known
as :	
a) Acid	b)Base
c) Indicator	d)None of these
137.NaClO solution reacts	with H_2SO_3 as, NaClO +
$H_2SO_3 \rightarrow NaCl + H_2SC_3$	04
A solution of NaClO us	sed in the above reaction
contained 15 g of	NaClO per litre. The
normality of the soluti	on would be :
$_{2})040$	b) 0.20
CJ 0.60	
138. The oxidation number	of sulphur in S_8
molecule is	
a) 6	b)0
c) 2	d)3
139.The equivalent wei	ght of KMnO ₄ (acidic
medium) is (at. wt. of	K = 39; Mn = 55):
a) 158	b) 15.8
c) 31.6	d)3.16
140 In which of the followi	ng transformations
awy gon is not the rodu	sing agont?
oxygen is not the redu	
a) Ag ₂ 0 \rightarrow 2Ag + $\frac{1}{2}$ 0 ₂	$(b)_{2}^{4NH_3+3U_2} \rightarrow (b)_{2}^{4NH_3+3U_2}$
2 - 2	$^{2}2 N_{2} + 6H_{2}0$
$(2 F_2 + 2H_2 O) \rightarrow$	$\frac{2\text{AgNO}_3 + \text{H}_2\text{O}_2}{\text{d}} \rightarrow$
0 4HF + 0 ₂	$^{\circ}2Ag + 2HNO_3 + O_2$
141.The oxidation state of	Fe in Fe ₃ O ₄ is
a) +3	b)8/3
c) +6	d)+2
142.Given, xNa ₂ HAsO ₃ + y	$MaBrO_3 + zHCl \rightarrow$
NaBr + H ₂ AsO ₄ + NaC	
The value of x. v and z	in the above redox
reaction respectively a	nre
(2) 2 1 2	h)213
a) $2, 1, 2$	d) 2 1 4
C_{J} 3,1,0	
143. The equivalent weigh	it of a reductant or an
oxidant is given by :	
Eq. wt.	
a) – <u>mol. weight of re</u>	$\frac{d}{d}$ b) Eq. wt. = $\frac{mol. wt.}{mol. wt.}$
no. of electrons	valence
1 molecule of re	20
Eq. wt.	d)All of the above
c) _ mol. w	<u>rt</u>
total charge on ca	ti
144.Titrations in which	I_2 solution is used as

intermediate are know	vn astitrations.
a) Iodometric	b) Iodimetric
c) Acidimetric	d)alkalimetric
145. <i>M</i> is the molecular	weight of KMnO ₄ . The
equivalent weight o	of KMnO ₄ when it is
converted into K ₂ MnO	4 is :
a) <i>M</i>	b) <i>M</i> /3
c) <i>M</i> /5	d) <i>M</i> /7
146. The oxidation state of	two sulphur atoms in
$H_{2}S_{2}O_{8}$	
a) –6	b)-2
c) +6	d)-4
147. The oxidation number	of oxygen in KO_3 , Na_2O_2
is	
a) 3,2	b) 1,0
c) 0,1	d)-0.33,-1
148.The ratio of amoun	nts of H_2S needed to
precipitate all the met	al ions from 100 mL 1 <i>M</i>
AgNO ₃ and 100 mL of	1M CuSO ₄ is :
a) 1 : 2	b)2:1
c) Zero	d)infinite
149.When $KMnO_4$ as oxidi	sing agent and ultimately
forms MnO_4^{2-} , Mn_2O_3	and Mn ²⁺ , the number of
electrons transferred	per mole of KMnO ₄ each
case respectively is :	
a) 4, 3, 1, 5	b) 1, 5, 3, 7
CJ 1, 3, 4, 5	d) 1, 3, 8, 5
150. The oxidation states of	100 in HIO_4 , H_3IO_5
and $H_5 IO_6$ are respect	ively
a) +1,+3,+7	DJ + 7 + 7 + 3
CJ + 7, + 7, + 7	$a_{J+7,+5,+3}$
151.For the reaction : N_2	$+ 3H_2 \rightarrow 2NH_3$; If E_1
and \mathcal{L}_2 are equivalent	$E_{\rm int}$ is a set of Nn ₃ and N ₂
$E_1 = 2$	E_2 15 :
a) 1 c) 2	d) 4
152 A chamical balance us	uj4 od pormally for woighing
in laboratory can weig	b up to a least count of :
	h) 0.001σ
c) 0.0001 g	d)0.001 g
153.In the standardizati	ion of $Na_2S_2O_2$ using

153.In the standardization of $Na_2S_2O_3$ using $K_2Cr_2O_7$ by iodometry, the equivalent weight of $K_2Cr_2O_7$ is :

a) (molecular b) (molecular weight)/2 weight)/6 d) Same as molecular c) (molecular weight)/3 weight 154. In the equation, $CrO_4^2 + SO_3^2$ $Cr(OH)_4 + SO_4^2$ the oxidation number of Cr changes from a) 6 to 4 b)6 to 3 d)4 to 3 c) 8 to 4 155. Oxidation state of nitrogen in nitric oxide is a)+2 b) + 3d)-2 c) +2 156. Select the correct statement about the following reaction, $CH_4^+ + NO_2^- \longrightarrow N_2 + 2H_2O$ Oxidation number of Oxidation number of N in NH⁺₄ changed a) N has changed from b) from -3 to 0 and -2 to +2that in NO_2^- changed from +3 to 0. Oxidation number of d) No change in N in in NH⁺₄ changed oxidation number. c) from +1 to 0 and that in NO_2^- changed trom -1 to 0. 157.Equivalent mass of oxidizing agent in the reaction is. $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$ a) 32 b)64 d)8 c) 16 158. During a redox titration involving a solution containing Fe^{2+} ions against MnO_4^- in the presence of excess of H⁺ ions, the number of electrons that gets transferred is a)6 b)5 c) 4 d)2 159. Milliequivalent of a solute in a solution can be given by: a) Mz_{eq.} = $M \times V_{\text{in mL}}$ b) M_{eq} . = $N \times V_{\text{in mL}}$ $Mz_{eq} = \frac{Wt}{Eq.WL} \times (b) \text{ and } (c)$ 1000

N.B.Navale

Date: 01.04.2025Time: 02:23:06Marks: 159

3.REDOX REACTION, REDOX REACTIONS

						: ANS	W
1)	а	2)	а	3)	h	4)	Ь
-) 5)	a d	6)	a h	5) 7)	C	- 7) 8)	h
9) 9)	u h	3) 10)	л 2	ر، (11	с с	3) 12)	2
-) 12)	r r	14)	а d	15)	a	16)	a
17)	b b	19)	h	19)	d	20)	h
21)	b	22)	h	23)	u h	20)	c
21)	C	26)	d	23)	C	2 4) 28)	с э
20)	L L	20)	u d	27)	d	20) 32)	a d
29)	d d	30) 34)	u c	31)	u a	36)	u h
33J 27)	u	22)	L n	20)	a h	30J 40)	d
37J 41)	a	30J 42)	a	39J 42)	U h	40)	u
41)	a	42)	d h	43)	U h	44J 40)	C O
45)	a	40J 50)	Մ Խ	4/J 51)	U h	40J	a
49J	a	50J	D	51)	D	52)	C
53)	a	54J	a	55J	D	50J	D
57)	a	58J	D	59J	a	60J	D
61)	a	62)	d ,	63)	a	64J	a
65)	а	66)	b	67)	а	68)	b
69)	a	70)	С	71)	а	72)	a
73)	b	7 4)	а	75)	C	76)	a
77)	a	78)	С	79)	a	80)	C
81)	d	82)	а	83)	b	84)	b
85)	а	86)	а	87)	а	88)	d
89)	а	90)	С	91)	a	92)	С
93)	С	94)	b	95)	b	96)	d
97)	С	98)	b	99)	d	100)	b
101) d	102)	a	103)	С	104)	а
105) C	106)	d	107)	а	108)	b
109) C	110)	d	111)	С	112)	a
113) d	114)	d	115)	d	116)	d
117) c	118)	b	119)	d	120)	b
121) c	122)	b	123)	d	124)	С
125) a	126)	С	127)	С	128)	b
129) a	130)	с	131)	d	132)	a
133) a	134)	d	135)	d	136)	С
137) a	138)	b	139)	С	140)	b
141) b	142)	С	143)	а	144)	b
145) a	146)	С	147)	d	148)	a
149) c	150)	C	, 151)	а	152)	С
153) h	154)	h	155)	а	156)	h
157) c	158)	b	159)	d	,	-
	, .	-00J		107J	~		

N.B.Navale

Date: 01.04.2025Time: 02:23:06Marks: 159

TEST ID: 70 CHEMISTRY

3.REDOX REACTION, REDOX REACTIONS

	: HINTS AND SOLUTIONS :					
Sin	gle Correct Answer Type		x = 6			
1	(a)	8	(b)			
	Oxidation number of hydrogen is always +1 is a		$A^{n-} \rightarrow A^{a+} + (a+n)e$			
	wrong rule since, it is $+1$ in hydrogen halides, -1		$Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$			
	in hydrides and zero in H_2 molecule.		Also, Meq of $A = Meq. of K_2Cr_2O_7$			
			$3.26 \times 10^{-3}(a+n) = 1.68 \times 10^{-3} \times 6$			
	All the other three statements (b), (c) and (d) are		Or $a + n = 3$			
	correct.		$\therefore a = 3 - n$			
2	(a)	9	(b)			
2	(a) CN ⁻ is reducing and complexing agent		Oxidation number of $As = +3$.			
3	(h)		H ₃ AsO ₃			
0			Let oxidation state of $As = x$			
			We know that, oxidation number of $H = +1, 0 =$			
			-2			
			Putting the values in formula,			
			(1) 3 + x + (-2)3 = 0			
	It is chromium peroxide.					
	Let the oxidation number of Cr is $''''x''''$.		3 + x - 6 = 0			
	$\operatorname{Cr}^{x+} + O_2^- + O_2^- + O_2^ \operatorname{Cr}O_5$		\Rightarrow x = +3			
	x + (-1)2 + (-1)2 + (-2)1 = 0					
	x - 6 = 0	10	(a)			
	x = +6		In basic medium			
	Hence, the oxidation state of Cr is +6.		$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$			
4	(d)		Net reaction is $+7$ $+6$			
	$3e + Mn^{7+} \rightarrow Mn^{4+}$		$MnO_4^- \rightarrow MnO_4^{-2}$			
_	$\therefore M = N/Valence factor = 0.6/3 = 0.2$		Change in oxidation number			
5	(d)		=7-6 = +1			
	It is precipitation reaction.	1.1	So, electrons involved = $1e$			
6		11	(c)			
	$\operatorname{Meq. of}_{W} \operatorname{H}_{2} \operatorname{U}_{2} = \operatorname{Meq. of}_{K} \operatorname{MnU}_{4}$		$I_2 \rightarrow 2I^{-1} + 10e$ M 254			
	$\frac{\pi}{34/2} \times 1000 = 10 \times 1$		$\therefore E = \frac{M}{10} = \frac{234}{10} = 25.4$			
	$\dot{w}_{WU,0} = 0.17$	13	(c)			
	0.17		Let the oxidation number of Cr in $K_2Cr_2O_7$ be x.			
	\therefore Per cent purity = $\frac{100}{0.2} \times 100 = 85\%$		Oxidation number of $0 = -2$. K = +1			
7	(c)					
	Let the oxidation number of Cr be x		$\therefore 2 \times 1 + 2x + 7(-2) = 0$			
	\therefore For K ₂ Cr ₂ O ₇		2y - 12y - 16			
	$+1 \times 2 + 2x + 7(-2) = 0$		$2x - 12; x = \pm 0$			
	2 + 2x - 14 = 0	14	(d)			
	2x = 12		$S \rightarrow SO = SO^2 - \frac{BaCl_2}{Bacl_2} BaSO One male of S will$			
			$3 \rightarrow 30_2 \rightarrow 30_4 \longrightarrow \text{Baso}_4 \text{One more of } S \text{ Will}$			

give one mole of BaSO₄. Thus, mole of BaSO₄ formed = mole of S = $\frac{8}{32} = \frac{1}{4}$

15 (a)

By using Stock-notation, the given compounds can be represented as,

 $FeO \rightarrow Fe((II)O$

$$Fe_2O_3 \rightarrow Fe_2(III)O_3$$

 $Cu0 \rightarrow Cu(II)0$

 $MnO_2 \rightarrow Mn(IV)O_2$

where, II, III, II, IV represent oxidation states of metals,

Fe(in FeO), Fe(in Fe_2O_3), Cu(in CuO) and

Mn (in MnO_2) respectively,

16 **(a)**

Meq. of lime stone = Meq. of CaC₂O₄ = Meq. of KMnO₄ = Meq. Of CaO $\therefore 40 \times 0.250 = \frac{W}{56/2} \times 1000$ $\therefore w_{CaO} = 0.28$ $\therefore \text{ per cent of CaO} = \frac{0.28 \times 100}{0.518} = 54\%$ 17 **(b)** $I_2^0 \rightarrow 2I^- + 2e$

The oxidation state of Xe in both XeO_2 and XeF_4 is 4. XeO_2 XeF_4 x + 2(-2) = 0 x + 4(-1) = 0x = 4 x = 4

20 **(b)**

 $NO_3^- \rightarrow NH_4^+ \text{ or } N^{5+} + 8e \rightarrow N^{3-}$ Thus, Eq. wt. of $NO_3^- = \frac{62}{8}$

21 **(b)**

Let, the oxidation state of sulphur in $H_2 S_2 O_7$ be x.

$$\therefore 2(+1) + 2(x) + 7(-2) = 0$$

2 + 2x - 14 = 0

2x = 12, x = +6

22 **(b)**

 $Na_2S_4O_6$ is salt of $H_2S_4O_6$ which has the following structure

 \Rightarrow Difference in oxidation number of two types of sulphur = 5

23 **(b)**

 $le + Mn^{7+} \longrightarrow Mn^{6+}$ $\therefore E = M/1$

24 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $C_2^{3+} \rightarrow 2C^{4+} + 2e$

```
25 (c)

Mn^{7+} + 5e \rightarrow Mn^{2+}

FeC_2O_4 \rightarrow Fe^{3+} + 2CO_2 + 3e
```

26 **(d)** Steam (H₂O) is reduced to hydrogen by iron

27 **(c)**

$$6e + Cr_2^{6+} \rightarrow 2Cr^{3+};$$

Eq. wt. of Cr = $\frac{\text{at. wt.}}{3}$

28 (a)
A measuring flask has a definite volume.
29 (h)

$$BiO_3^- + 6H^+ + 2e^- \rightarrow Bi^{3+} + 3H_2O$$

$$\frac{\text{Cr}_2\text{O}_7^{2^-} + 14\text{H}^+ + 6e^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}}{(2\text{I}^- \rightarrow \text{I}_2 + 2e^-) \times 3}$$

$$\frac{\text{Cr}_2\text{O}_7^{2^-} + 14\text{H}^+ + 6\text{I}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O} + 3\text{I}_2}{(22\text{C}^{3^+} + 7\text{H}_2\text{O} + 3\text{I}_2)}$$

Hence, number of moles of I_2 produced =3 31 (d)

Since, charge is not balanced for both the sides, on solving we got :

 $14H^{+} + Cr_2 0_7^{2-} + 6l^{-} \rightarrow 3I_2 + 2Cr_2^{3+} + 7H_2 0$

Now, charge on LHS = charge on RHS

All ions are balanced.

32 **(d)**

 ${\stackrel{+7}{Mn}}$ O₄-1 (aq) + Br-1 (aq) $\longrightarrow {\stackrel{+4}{MnO2}}$ (s) + Br O₃⁻¹ (aq)

In the above reaction, oxidation number of Mn in $MnO_4^{-1}(aq)$ decreases from +7 to +4 in $MnO_2(s)$ and oxidation number of Br increase from -1 (in Br ⁻(aq) to +5 (in $BrO_3^{-1}(aq)$). Thus, the correct option is (d).

The oxidation number of 0 in H_2O_2 increases.

Hence,

 $\mathrm{H}_2\mathrm{O}_2$ acts as a reducing agent as it is undergoing oxidation.

42 **(a)**

Oxidation number of Mn in MnO_4^{2-} ion is +6. MnO_4^{2-} Let, oxidation of Mn = x We know that, oxidation state of 0 = -2; Putting the value in formula,

$$x + 4(-2) = -2$$

x - 8 = -2

$$x = -2 + 8 = +6$$

44

Meq. of K⁺ = Meq. of KMnO₄ = $\frac{1}{5} \times 1000 = 200$ \therefore Eq. of K⁺ = $\frac{200}{1000} = 0.2$ Also, mole of K⁺ = $\frac{0.2}{5} \left[\frac{\text{Valence factor} = 5}{\text{Mn}^{7+} + 5e} \right] = 0.04$

$$\therefore \text{ No. of } \mathrm{K}^+ = \frac{0.2}{5} \times 6.023 \times 10^{23} = 2.4 \times 10^{22}$$

$$(C)$$

$$N O_2 + OH \rightarrow N O_3 + N O_2 H_2O$$
Increase in ON (Oxidation)

 $NO_2(g)$ is oxidised to NO_3^- and reduced to NO_2^- .

45 (a) Meq. of Fe = Meq. of K₂Cr₂O₇ $\frac{W}{56/1} \times 1000 = 1 \times 0.1055$ $\therefore \quad W = 5.9 \times 10^{-3} \text{ g} = 5.9 \text{ mg}$ 46 (b) $2e + 2Fe_3^{(8/3)+} \longrightarrow 3Fe_2^{3+}$ $\therefore E_{Fe_3O_4}$ $= \frac{M}{1}$ 47 (b) The sum of the oxidation states is always zero in neutral compound.

The oxidation state of *X*, *Y*, and *Z* are +2, +5 and -2 respectively.

1. $\ln X_2 Y Z_6$ $2 \times 2 + 5 + 6(-2) \neq 0$ 2. $\ln XY_2Z_6$ $2 + 5 \times 2 + 6(-2) = 0$ 3. $\ln XY_{5}$ $2+5 \times 5 \neq 0$ 4. $\ln X_3 Y Z_4$ $3 \times 2 + 5 + 4(-2) \neq 0$ Hence, the formula of the compound is XY_2Z_6 . 48 (a) It imparts its colour at end point. 49 (a) $MnO_{-} + 8H^{+} + 5e^{-} = Mn^{2+} + 4H_{-} O \times 2$

$$\frac{MnO_4^{-} + 8H^{+} + 3e^{-} \longrightarrow Mn^{-} + 4H_2O \times 2}{C_2O_4^{2^{-}} \longrightarrow 2CO_2 + 2e^{-} \times 5}$$

$$2MnO_4^{-} + 5C_2O_4^{2^{-}} + 16H^{+} \longrightarrow 2Mn^{2^{+}} + 10CO_2 + 8H_2O$$

Thus, the coefficients of MnO_{2} , $C_2O_4^{2-}$ and H^+ in the above balance equcues respcitively are 2,5,16.

50 **(b)**

The sum of oxidation states of all atoms in a molecule is zero.

Suppose oxidation state of S in $Na_2 S_2 O_3$ be x.

$$\therefore 2 \times 1 + 2x + (-2 \times 3) = 0 \Rightarrow 2 + 2x - 6 = 0$$

 $2x = +4 \Rightarrow x = +2$

51 **(b)**

Let oxidation state of I in $IPO_4 = 'x'$. x + (-3) = 0 $(PO_4^{3-} \text{ ion has charge equal to } -3)$ x = +352 (c)

 $5I^{-} + 0_{3}^{-} + 6H^{+} \rightarrow 3H_{2} + 3H_{2}0$

53 **(d)**

H₂SO₅ (peroxy sulphuric acid)

$$H - O - O - S - O - H$$

$$\underbrace{Peroxy}_{likage} \bigvee_{O}$$

 $H_2S_2O_8$ (peroxy sulphuric acid)

о н-о-<u>s-</u>о-о-<u>s-</u>он о

All of the above have oxidation number = 6 in sulphur, peroxy linkage (- 0 - 0 -) has -1

oxidation number for oxygen, CrO_5 has two peroxy linkage, thus oxidation number of Cr = +6

 $K_2 Cr_2 O_7 \,$ and $Cr O_4^{2-}$ both has +6 oxidation number for Cr.

$$SO_4^{2-}$$
 has +6 oxidation number for S.

54 (a) Meq. of HNO₃ = Meq. of I₂ $\frac{w}{63/1} \times 1000 = \frac{5}{254/10} \times 1000$ $\therefore w = 12.4 \text{ g}$ 55 (b) $\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e$ $\therefore E = M/2 = \frac{119 + 71}{2} = 95$

56 **(b)**

The balanced equation is

$$\mathrm{C_2H_2} + 5\mathrm{O_2} \rightarrow 4\mathrm{CO_2} + 6\mathrm{H_2O}$$

Ratio of the coefficient of CO_2 and H_2O is 4: 6 and 2: 3.

57 (d)

Oxidation takes place at anode (c) is not feasible, *i.e.*, Cr^{3+} is not oxidised to $Cr_2O_7^{2-}$ under given conditions. Hence, option (d) is correct.

5

6

Change in oxidation
Change in oxidation state = 2
+7

$$5M^{x^+} + 2MnO_4^- \longrightarrow M^0O_3^- + Mn^{2^+} + \frac{1}{2}O_2$$

Change in oxidation state = 5
Reduction
 $x + 2 = 5$
 $\therefore \quad x = 5 - 2 = +3$
9 (a)
Meq. of KMnO₄ = Meq. of FeC₂O₄
Fe²⁺C₂²⁺O₄ \longrightarrow Fe³⁺ + 2C⁴⁺O₂ + 3e
 $0.1 \times 5 \times V = \frac{100 \times 10^{-3}}{144/3} \times 1000$
 $\therefore \quad V = 4.1 \text{ mL}$
0 (b)

In HNO₂, the oxidation number of N is + 3 which is less than the maximum possible, oxidation number *ie*, + 5 and more than the minimum possible oxidation number *ie*, -3, therefore, it can act both as an oxidizing as well as reducing agent

61 **(d)**

Oxidation number of nitrogen is +5 in HNO₃.

$$1 + x + 3(-2) = 0$$

$$x - 5 = 0$$

x = +5

62 **(d)**

 $\begin{bmatrix} \operatorname{Cr}_2^{6+} + 6e & \to 2\operatorname{Cr}^{3+} \end{bmatrix} \times 1; \begin{bmatrix} \operatorname{Sn}^{2+} & \to \operatorname{Sn}^{4+} + 2e \end{bmatrix} \times 3$

63 **(d)**

Haematite is Fe_2O_3 , in which oxidation number of iron is III.

Magnetite is Fe_3O_4 which is infact a mixed oxide (FeO. Fe_2O_3 .), hence iron is present in both II and III oxidation state.

64 **(a)**

 $\overset{\mathbf{i}^{1}}{\mathbf{I}^{2}} + \overset{\mathbf{i}^{5}}{\mathbf{I}^{3}} \mathbf{O}_{3}^{-} + \mathrm{H}^{+} \longrightarrow \overset{\mathbf{0}}{\mathbf{I}_{2}} + \mathrm{H}_{2}\mathrm{O} \\
[2\mathbf{I}^{-} \longrightarrow \mathbf{I}_{2} + 2e^{-2}] \times 5 \quad \dots \quad (i) \\
10e^{-} + 2 \mathrm{I}\overset{\mathbf{i}^{5}}{\mathrm{O}_{3}} \longrightarrow \overset{\mathbf{i}}{\mathbf{I}_{2}} \quad \dots \quad \dots \quad (ii)$

On adding Eqs. (i) and (ii), we get

 $10I^- + 2IO_3^- \rightarrow 6l_2$

To balance O atoms, add $6H_2O$ molecules on RHS and 12 H⁺on LHS, then

 $10I^{-} + 2IO_{3}^{-} + 12H^{+} \rightarrow 6I_{2} + 6H_{2}O$ or $5I^{-} + 1O_{3}^{-} + 6H^{+} \rightarrow 3I_{2} + 3H_{2}O$

65 **(a)**

Let oxidation state of Cr in $K_2Cr_2O_7 = x$ $(+1 \times 2) + 2x + (-2 \times 7) = 0$ or +2 + 2x - 14 = 0 $\therefore x = +6$ Let oxidation state of Cr in $K_2CrO_4 = x$ $+1 \times 2 + x + (-2 \times 4) = 0$ 2+x-8 = 0x = 6

 \div Change in oxidation state of Cr is zero when it changes from

 $K_2Cr_2O_7$ to K_2CrO_4 .

66 **(b)**

Let x be the oxidation number of gold (Au) in the complex $[AuCl_4]^{-1}$.

 $\therefore \mathbf{x} + 4(-1) = -1$

 $\Rightarrow x = -1 + 4 \Rightarrow x = +3$

Hence, the oxidation number of gold is +3.

67 **(a)**

Reducing agent is one which donates donates electrons

(a) CO_2 , oxidation state of carbon in CO_2

is +4 which is the highest oxidation state of carbon.

 \therefore CO₂ cannot acts as reducing agent.

(b) SO_2 , oxidation state of sulphur in SO_2 is +4.

The highest oxidation state of sulphur is +6.

 \therefore SO₂ can acts as reducing agent.

(c) NO₂, oxidation state of nitrogen in NO₂ is +4.

The highest oxidation state of nitrogen is +5.

 \therefore NO₂ can acts as reducing agent.

(d) ClO_2 , oxidation state of chlorine in ClO_2 is +4.

The highest oxidation state of chlorine is +7.

 \therefore ClO₂ can acts as reducing agent.

 $2 \operatorname{NO}^{+2} + 3l_2 + 4H_2 O \longrightarrow 2 \operatorname{NO}^{+5}_{3-} + 6l^- + 8H^+$

Hence, NO acts as a reducing agent and reduces $\rm I_2$ to $\rm r^-$ since,

the oxidation number of nitrogen changes from +2 in NO to +5 in NO₃⁻

69 (a) Meq. of $HNO_3 = Meq. of I_2$

 $\frac{w}{63/3} \times 1000 = \frac{5}{254/10} \times 1000$ $\therefore w_{HNO_3} = 4.13 \text{ g}$

71 **(a)**

73

Mn has +7 oxidation state in KMnO₄. 1 + x + 4(-2) = 01 + x - 8 = 0

$$\begin{array}{l}
1 + x - 8 = 0 \\
x = +7
\end{array}$$

72 (a) $Cu^{2+} + 2I^- \rightarrow CuI_2 \rightarrow Cu_2I_2 + I_2$ $I_2 + Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2NaI$ (Redox

Meq. of $K_2Cr_2O_7 =$ Meq. of H_2S 2 x V = $\frac{0.81}{34/2}$ x 1000

 $\therefore V = 23.8 \text{ mL}$ 74 (a) Corrosion involves oxidation of species. 75 (c) : In this reaction phosphorus is simultaneously oxidised and reduced. ∴ It is disproportionation reation. $P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$ 76 (a) 0 +1 -1 $Li + H_2 \rightarrow 2LiH$ Oxidation number of hydrogen is decreasing from 0 to -1. So, H₂ is acting as oxidising agent in this reaction. 83 77 (a) $Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 7H_2O + 3I_2$ $Cr_2O_7^{2-}$ is reduced to Cr^{3+} . Thus, final state of Cr is +3. Hence, (a) 78 (c) Oxidation $H_2 + Br_2$ -Reduction Only this reaction involves oxidation and reduction. 79 (a) In the reaction, $HOCI + H_2 O_2 \rightarrow H_3O^+ + CI + O_2$ Oxidation number of oxygen increases from -1 to 0. Hence, H_2O_2 acts as reducing agent. 84 Decrease in ON (reduction) 80 (c) 85 Corner S-atom, +2 each from (= 0), +1 from (0^{-}) and zero from -S. Therefore, its oxidation number is +5. Middle S atoms has 0 oxidation number. 81 (d) An oxidising agent is a species, which oxidises the other species and gets itself reduced.

(a) $Cu + 2H_2SO_4 \rightarrow Cu^{+2}SO_4 + SO_2 + 2H_2O_4$

(b) $3\overset{0}{S} + 2H_2SO_4 \rightarrow 3\overset{+4}{S}O_2 + 2H_2O_4$ (c) $\overset{0}{C}$ + H₂SO₄ \rightarrow $\overset{+4}{C}$ O₂ + 2SO₂ + 2H₂O (d) $Ca^{+2} F_2 + H_2 SO_4 \rightarrow C^{+2} aSO_4 + 2HF^{-1}$

In reaction (d), oxidation number of elements remains unchanged. Thus, in this reaction, H₂SO₄ does not act as an oxidising agent.

82 (a)

 Fe_2O_3 \therefore Total charge on cation or anion = +6 $Fe_2^{3+}O_3^{2-}$ $\therefore E = \frac{112}{6} or \frac{56}{3}$

(b)

Let the oxidation number of oxygen in following compounds is x.

In OF₂

$$x + (-1)2 = 0$$

 $x = +2$
In KO₂
 $+1 + (x \times 2) = 0$
 $2x = -1$
 $x = -\frac{1}{2}$
In BaO₂
 $+2 + (x \times 2) = 0$
 $2x = -2$
 $x = -1$
In

O₃, oxidation number of oxygen is zero because ox free state or in any of its allotropic form is always zero.

Thus, the increasing order of oxidation number is $BaO_2 < KO_2 < O_3 < OF_2$

$$-1 \quad -\frac{1}{2} \quad 0$$
 (b)

$$4\text{Zn} + \text{NO}_3^- + 7\text{H}_2\text{O} \longrightarrow 4\text{Zn}^{2+} + \text{NH}_4^+ + 100\text{H}^2$$

+2

(a) $Fe^{2+} + Ce^{4+} \rightarrow Fe^{3+} + Ce^{3+}$ $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ $\therefore \frac{Moles \text{ of cerric ammonium sulphate}}{Moles \text{ of potassium permanganate}} = \frac{1}{1/5}$ = 5.0

86 (a)

$$H_2 \overset{-2}{S} \longrightarrow \overset{0}{S}$$

The oxidation number of S increases from -2 to 0 in elemental sulphur and hence, H₂S gets oxidized

87 (a) $\therefore E = M/2 = \frac{190}{2} = 95$ The couple having oxidised and reduced forms of 96 **(d)** a substances taking part in an oxidation or These are characteristics of indicator. reduction half-reaction is called a redox couple. 97 (c) 88 (d) Let the oxidation number of Xe is x in XeOF₂. HCl is also oxidised along with oxalic acid by x + (-2) + 2(-1) = 0KMnO₄. x - 2 - 2 = 0 $2KMnO_4 + 16HCl$ x = +4 \rightarrow 2KCl + 2MnCl₂ + 5Cl₂ + 8H₂O 98 (b) $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4$ Meq. of $H_2O_2 = 25 \times 0.5 \times 2 = 25$; \rightarrow K₂SO₄ + 2MnSO₄ + 8H₂O Meq. of KMnO₄ = 50 \times 0.2 \times 5 = 50; $+10C0_{2}$ \therefore 25 Meq. or 5 milli mole of KMnO₄ are left. 89 (a) 99 (d) Caro's acid is H₂SO₅. It has a peroxide linkage so, Addition of KI to CuSO₄ makes it dark brown. oxidation state of S is 100 (b) Oxidation number of $P(in P_4)$ is 0 which is the intermediate of -3 (in PH₃) and +1 (in NaH₂PO₂). So, that P₄ is reduced to PH₃ and oxidised to -OH NaH₂PO₂. Let the oxidation state of S is *x*. 101 (d) H_2SO_5 (one peroxide bond) $Cr_2O_7^2 + 14H + 6Fe^{2+} \rightarrow 2Cr^{3+} + 6Fe^{3-} + 7H_2O^{3+}$ +2 + x + 3(-2) + 1(-2) = 02 + x - 6 - 2 = 0102 (a) $2S_2^{2+} \rightarrow S_4^{(5/2)+} + 2e \therefore$ Eq. wt. of $Na_2S_2O_3 = \frac{M}{1}$ x - 6 = 0x = 6 $I_2^0 + 2e \rightarrow 2I^-$ 90 (c) 103 (c) Oxidised Eq. of $Cl_2 = eq. of chloride$ \cap \cap $1 \times 2 = \frac{111}{E + 35.5}$ 2HBr $H_2 +$ Br_2 -ReducingOxidising $\therefore E = 40$ agent |agenReduced $\therefore M = 40 \times 2 = 80$ (Metal is bivalent.) 104 (a) H_2 - reducing agent, Br_2 - oxidizing agent agent Milliequivalent $[(W/Eq. wt.) \times 1000]$ or millimole $\left[\left(\frac{W}{M}\right) \times 1000\right]$ do not change on 91 (a) $\operatorname{Cr}_2^{6+} + 6e \rightarrow 2\operatorname{Cr}^{3+}$; $\operatorname{Fe}^{2+} \rightarrow \operatorname{Fe}^{3+} + e$ dilution. 92 (c) 105 (c) Meq. of salt = Meq. Of Na_2SO_3 The oxidation state of a metal in a compound is $50 \times 0.1 \times n = 25 \times 0.1 \times 2$ represented according to the notation which is $\therefore n = 1$ (change in ox. no.) known as Stock notation. $\therefore M^{3+} + e \rightarrow M^{2+}$ 93 (c) 106 (d) Meq. of $HNO_3 = 1000 \times 2 = 2000$ All terms have same meaning. $\therefore \frac{w}{63/3} \times 1000 = 2000$ 107 (a) $Fe^{2+} \rightarrow Fe^{3+} + e$ $\therefore w = 42 \text{ g}$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 94 **(b)** 5 mole $FeSO_4 = 1$ mole $KMnO_4$ $Starch + I_2 \rightarrow Blue$ $X' = \frac{2}{3}$ mole 95 **(b)** Or $Fe^{2+} \rightarrow Fe^{3+} + e$ $\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e$ $(C^{3+})_2 \rightarrow 2C^{4+} + 2e$

FeC₂O₄ → Fe³⁺ + 2C⁴⁺ + 3e
Mn⁷⁺ + 5e → Mn²⁺
5 mole FeC₂O₄ = 3 mole KMnO₄
∴ 'Y' =
$$\frac{3 \times 2}{5}$$

108 **(b)**

Compound formed from A, B and C is that for which sum of oxidation number is zero.

$$\begin{array}{ccc} A_3 & (B & C_4)_2 \text{ cerrect} \\ \uparrow & \uparrow & \uparrow \\ +6 & +10 & -16 \end{array}$$

109 **(c)**

 $Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$

110 **(d)**

(a) NaCl + KNO₃ \rightarrow NaNO₃⁺¹⁻¹ + KCl (b) CaC₂O₄ + 2HCl⁺² \rightarrow CaCl₂ + H₂⁺C₂O₄ (c) Ca(OH)₂ + 3NH₄Cl \rightarrow CaCl₂ + 2NH₃ + 2H₂O

In all these cases, during reaction there is no change in oxidation state of ion or molecule or constituent atom, these are simple ionic reactions, (d) $2 \text{ K}[\text{Ag}(\text{CN})_2] + \text{Zn} \rightarrow 2\text{Ag} + \text{K}_2[\text{Zn}(\text{CN})_4]$

 $\mathrm{Ag^+} \rightarrow \mathrm{Ag}$, gain of electron, reduction

 $\text{Zn} \rightarrow \text{Zn}^2$, loss of electron, oxidation

111 **(c)**

One CHO is oxidised to COO^- and one CHO is reduced to CH_2OH .

Thus, it is a disproportionation reaction. Thus, (a) and (b)

are true and is reducing as well as exidising agent CHO

Thus, (d) is also true. Thus, (c) is incorrect.

112 **(a)**

Oxidation state of oxygen in H_2O_2 is -1. -1 is the intermediate oxidation state of oxygen.

113 (d)

 $3 \overset{0}{B}r_2 + 6CO_2^2 + 3H_2O \longrightarrow 5 \overset{-1}{B}r_1 + \overset{+5}{B}rO_3 + 6HCO_3$

 Br_2 is reduced to Br^- (oxidation number decreases from zero to - 1) and Br_2 is oxidised to BrO_3^- (axidation number increases from zero to +5). 114 (d) Following are the examples of redox reaction, (a) $CuO + H_2 \rightarrow Cu + H_2O$ (b) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ (c) 2 K + F₂ $\rightarrow 2KF$ Option (d) is not an example of redox reaction.

115 **(d)**

NaNO₂ (Sodium nitrite) acts both as oxidising as well as reducing agent because in it N-atom is in +3 oxidation state (intermediate oxidation state). Oxidising property $2NaNO_2 + 2KI + 2H_2SO_4$ $\rightarrow Na_2SO_4 + K_2SO_4 + 2NO$ $+ 2H_2O + I_2$ Reducing property $H_2O_2 + NaNO_2 \rightarrow NaNO_3 + H_2O$ 116 (d) -1 +2 +4 -2 +1 -1 +4 -2 -2 $H_2O_2 + Na_2CO_3 \rightarrow Na_2O_2 + CO_2 + H_2O$ None of the elements changes its oxidation number 117 (c)

ie, it has four peroxide bonds each having an oxidation number of -1 and one double bond in which oxidation number of 0 is -2Therefore, $x + 4 \times (-1) + 1 \times (-2) = 0$ $\therefore x = \times 6$ 118 **(b)** Oxidation state of Mn in $Mn^{2+} = +2$ -Let oxidation state of Mn in $MnO_2 = x$)**.** $\therefore x + (2 \times -2) = 0$ $\therefore x = +4$ (iii) Let the oxidation state of Mn in $KMnO_4 = x$ $\therefore +1 + x + (-2 \times 4) = 0$ $\therefore x = +7$ iv) Let oxidation state of Mn in $K_2MnO_4 = x$ \therefore (+1 × 2) + x + (-2 × 4) = 0 $\therefore x = +6$: Increasing order of oxidation states is (i) < (ii) < (iv) < (iii)119 (d)

 $[Mn^{7+} + 5e \rightarrow Mn^{2+}] \times 3$ $[Fe^{2+}C_2^{3+}O_4 \rightarrow Fe^{3+} + 2C^{4+}O_2 + 3e] \times 5$ 120 **(b)** Meq. of Na₂S₂O₃ = Meq. of CuSO₄ $\therefore V \times 0.4 \times 1 = 50 \times 0.2 \times 1$ $\therefore V = 25 \text{ mL}$

121 (c)

$$||M^{+} + 5e \rightarrow Mn^{2+}| \times 2|$$

$$||C^{+}_{2} \rightarrow 2C^{++} + 2e| \times 5$$
122 (b)
Meq. of $l_{2} = Meq. of Na_{2}S_{2}O_{3} = 40 \times 0.11$

$$\frac{1}{\sqrt{2}C^{+}_{2}} \times 1000 = 40 \times 0.11$$

$$\frac{1}{\sqrt{2}C^{+}_{2}} \times 1000 = 10 \times 0.11$$

$$\frac{1}{\sqrt{2}C^{+}_{2}} \times 1000 = 10 \times 0.11$$

$$\frac{1}{\sqrt{2}C^{+}_{2}} \times 1000 = 100 \times 0.11$$

$$\frac{1}{\sqrt{2}C^{+}_{2}} \times 1000 \times 1000 \times 0.11$$

$$\frac{1}{\sqrt{2}C^{+}_{2}} \times 1000 \times 10000 \times 1000 \times 10000 \times 1000 \times 10000 \times 10000 \times 10000 \times 100$$

Oxidation state of Cr is +6 due to the presence of

So, coefficients of MnO_4^- , $C_2O_4^{2-}$ and H⁺are 2,5, and 16 respectively. 134 (d) $N = \frac{15.8 \times 1000}{158/5 \times 100} = 5$ 135 (d) $S_2^{2+} \rightarrow 2S^{6+} + 8e$ 136 (c) Indicators are the substances which indicates the completion of a reaction. 137 (a) $2e + Cl^+ \rightarrow Cl^ N = \frac{15}{74.5/2 \times 1} = 0.40$ 138 **(b)** Oxidation number of sulphur is zero in S₈ molecule as it is a monoatomic molecule. 139 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $\therefore E = M/5$ 140 **(b)** NH_3 is oxidised to N_2 by O_2 . Thus, O_2 is an oxidising agent and not a reducing agent. 141 **(b)** Let the oxidation state of Fe in $Fe_3O_4 = x$ $\therefore 3x + 4 \times (-2) = 0$ 3x - 8 = 00r $x = \frac{1}{3}$:. 142 (c) $3Na_2HAsO_3 + NaBrO_3 + 6HCl \rightarrow NaBr +$ $3H_3AsO_4 + 6NaCl$ 143 (a) The formula for Eq. wt. of reductant or oxidant. 144 (b) It is definition of iodimetric titrations. 145 (a) $Mn^{7+} + le \rightarrow Mn^{6+}$ $\therefore E = M/1$ 146 (c) The chemical structure of H₂S₂O₈ is as follows 0 0 Ш Ш $\mathrm{H}-\mathrm{o}-\mathrm{s}-\mathrm{o}-\mathrm{s}-\mathrm{o}-\mathrm{H}$ 0 0 $2 \times (+1) + 2 \times x + 6 \times (-2) + 2 \times (-1) = 0$ for H for S for 0 for 0 __ 0

+2+2x-12-2=0

2x = +12x = +6147 (d) **KO**₃ Na_2O_2 Suppose O.N. of O = xsuppose 0.N. of 0 = x $2 \times 1 + 2x = 0$ +1 + 3x = 03x = -12 + 2x = 0 $x = -\frac{1}{3}$ 2x = -2 $x = -\frac{2}{2}$ x = -0.33x = -1148 (a) Meq. of $AgNO_3 = 100 \times 1 - 100$ Meq. of $CuSO_4 = 100 \times 1 \times 2 = 200$ Thus, H₂S is needed in the same Meq. ratio. 149 (c) $Mn^{7+} + e \rightarrow Mn^{6+} (MnO_4^{2-})$ $Mn^{7+} + 3e \rightarrow Mn^{4+}$ (MnO_2) $2\mathrm{Mn}^{7+} + 8e \rightarrow (\mathrm{Mn}^{3+})_2 \quad (\mathrm{Mn}_2\mathrm{O}_3)$ $Mn^{7+} + 5e \rightarrow Mn^{2+}$ (MnO_2) 150 (c) The oxidation state of iodine in HIO_4 is + 7 as 1 + x + 4(-2) = 0*x* = +7 The oxidation state of iodine in H_3IO_5 is +7 as 3+x+5(-2)=0x = +7The oxidation state of iodine in H_5IO_6 is +7 as 5+x+6(-2)=0x = +7151 (a) $(N^0)_2 + 6e \rightarrow 2(N^{3-})$ $3(H^0)_2 \rightarrow 2(H^{+1})_3 + 6e$ $E_{N_2} = \frac{28}{6}; E_{NH_3} = \frac{17}{3}$ 152 (c) The weight of rider used is 0.0002 g. 153 **(b)** $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+};$ $\therefore \text{ Eq. wt.} = \frac{\text{mol. wt.}}{6}$ 154 (b) $\operatorname{CrO}_4^{2-} + \operatorname{SO}_3^{2-} \longrightarrow \operatorname{Cr}(\operatorname{OH})_4^- + \operatorname{SO}_4^{2-}$ Let the oxidation number of Cr is x in CrO_4^{2-} x + 4(-2) = -2x = 6and in $Cr(OH)_4^-$ the oxidation number of Cr is y y + 4(-2) + 4(1) = -1y - 8 + 4 = -1y = 3

Hence, oxidation number of Cr changes from +6 to +3.

155 (a)

Oxidation state of nitrogen in nitric oxide (NO) is +2.

Molecular formula of nitric oxide = NO

$$x-2 = 0$$

 $4e + S^{4+} \rightarrow S^{0}$ $\therefore E_{SO_2} = \frac{64}{4} = 16$ 158 **(b)** $MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O$ $[Fe^{2+} \rightarrow Fe^{3+} + e^{-}]^{5}$ $MnO_{4}^{-} + 8H^{+} + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_{2}O$ \therefore Five electrons gets transferred.

159 **(d)**

These are formulae of Meq.