N.B.Navale

Date : 01.04.2025

Time : 02:51:54

Marks : 191

7.S-BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS), ELEMENTS OF GROUP 1 AND 2

Single Correct Answer Type

1.	Which of the following sequence of chemical
	$\frac{0}{2}$
	$Na + O_2 \rightarrow Na_2O$ $Na \rightarrow Na_2O$
	a) $\xrightarrow{H_2O}$ NaCl b) $\xrightarrow{H_2O}$ NaOH
	$\xrightarrow{\text{CO}_2}$ Na ₂ CO ₃ $\xrightarrow{\Delta}$ Na $\xrightarrow{\text{CO}_2}$ Na ₂ CO ₂ $\xrightarrow{\Delta}$ Na
	$Na + H_2 O \rightarrow$
	$N_2OH \rightarrow N_2OH$
	Na + H ₂ O \rightarrow Naon γ Na ₂ CO ₃ C) ucl CO ₂ d) ^{HCl} ucl
	$NaOH \xrightarrow{HCI} NaCl \xrightarrow{HCI} N_i \xrightarrow{NaCl} NaCl (Molten)$
	$\xrightarrow{\text{Electrolysis}}$ Na + $\frac{1}{2}$ Cl ₂
2	A gas reacts with CaO and not with NaHCO ₂ is:
2.	a) CO_2 b) Cl_2
	c) O_2 d) N_2
3.	Which of the following does not illustrate the
	anomalous properties of lithium?
	a) Li is much softer The melting point
	than the other group and boiling point of
	I metals
	high
	The ion of Li and its
	Li forms a nitride
	c) Li_3 N unlike group Id) than those of the rest
	metals of the group
	elements
4.	The ionic carbide is:
	a) CaC ₂ b) ZnC
	c) SiC d) TiC
5.	The main constituent of bones is:
	a) $CaSO$ b) CaF_2
6	$C_1 C_3 C_4$ $C_3 C_3 C_4 C_2$ Which of the following is known as dead hurnt
0.	nlaster?
	a) Gypsum b) Plaster of Paris
	c) Anhydrite d) None of these
7.	Colemnite is
	a) $Ca[B_2O_4(OH)_2]$. $2H_2Cb) Ca_2B_6O_{11}$. $5H_2O$
	c) $Ca(OH)_2$ d) $Na_2B_4O_7$. $2H_2O$
8.	Solubility of alkaline earth metal hydroxides
	increases from $Be(OH)_2$ to $Ba(OH)_2$ because:

	a) Hydration energy > 1 lattice energy	o)Lattice energy > hydration energy
	c) Hydration energy is	d)None of the above
	equal to lattice	
	energy	
9.	The blue colour of the	solution of sodium in
	liquid ammonia is due to	1
	a) the presence of	a) the presence of
	ammoniated	sodium ions
	electron	Sourann rons
	c) the formation of	the formation of
	c) the formation of	d)
10	Porullium chows diagon	al relationship with
10.	aluminium Which of the	al relationship with
	in correct?	e tonowing similarity is
	$Be_2 C$ like AlC ₃ yields	Be like Al is rendered
	a) methane on f	passive by HNO ₃
	nyarolysis	
	$_{2}$ Be(OH) ₂ like	be forms berynates
	^{C)} Al(OH) ₃ is basic	a Jand Al forms
4.4		aluminates
11.	NaOH can also be prep	ared by electrolysis of
	aqueous Naci. Amount	of NaUH formed when
	0.445 L OF Naci(aq) is	electrolysed for 13/s
	with a current of 1.08 A,	IS
	a) 0.09 g	o) 0.12 g
	c) 0.06 g	amount of NaCl has
		[°] not been given
12.	The most soluble fluoric	le in water is
	a) BeF_2	$O)CaF_2$
4.0	$cJSrF_2$	1) BaF ₂
13.	Mg burns in CO to produ	ice
	a) MgO + CO I	MgO_2
	c) MgO + C $($	1) MgCO ₃
14.	The low solubility of LiF	and Csl is due to
	a) smaller latticel	ojhigh lattice enthalpy,
	enthalpy, high	smaller hydration
	hydration enthalpy	enthalpy
	c) high lattice enthalpy,	d)low lattice enthalpy,

highhydrationlowhydrationenthalpyenthalpy15. The chemical which is used for plastering the

broken bones is

TEST ID: 71 CHEMISTRY

a) $(CaSO_4)_2 \cdot H_2O$ b) MgSO₄.7H₂O a) they become moreb) lattice c) $FeSO_4 \cdot 7H_2O$ d)CuSO₄ . $5H_2$ O ionic 16. Mix calcium sulphate with conc. HCl and forms a paste. Bring a pinch of this paste near to the hydration flame, what colour will you obtain? c) decreases a) Brick red b) Apple green from Be²⁺ to Ba²⁺ c) Golden yellow d)Crimson red 27. What happens, when ionic hydrides of s-block 17. A substance which gives brick red flame and elements in molten state are electrolysed? breaks down on heating to give oxygen and a brown gas is a) Hydride a) magnesium nitrate b) calcium nitrate migrates at cathode c) barium nitrate d) strontium nitrate c) Hydride ion reformsd) Dihydrogen 18. Ca, Sr and Ba dissolve in liquid ammonia giving metal hydride 28. A more economical process but based on same а..... a) Highly conducting b) Highly reducing principle was given by c) Paramagnetic d)All are correct a) Solvay 19. Which of following elements does not form c) Williamson amide when reacted with ammonia? 29. Product of the following reaction is LiH + a) Li b)Na $AlCl_3 \rightarrow$ c) K d)Rb a) $LiAlH_4 + LiCl$ c) $LiAlH_3 + LiCl$ 20. Which one of the following order of stability is correct? 30. Slaked lime $[Ca(OH)_2]$ is used in the $\begin{array}{l} \text{MgCO}_3 > CaCO_3 \\ \text{a)} > SrCO_3 > BaCO_3 \\ \text{b)} > SrCO_3 > BaCO_3 \\ \text{b)} > CaCO_3 > MgCO_3 \\ \text{b)} > CaCO_3 > MgCO_3 \\ \text{c)} > SrCO_3 > BaCO_3 \\ \text{c)} > SrCO_3 > CaCO_3 \\ \text{c)} > MgCO_3 > SrCO_3 \\ \text{c)} > MgCO_3 \\$ manufacture of a) Fire bricks c) Medicine 31. In which of the following processes, fused 21. Which of the following property of hydroxides sodium hydroxide is electrolysed at 330°C of alkaline earth metals increases from top to temperature for extraction of sodium? bottom? a) Castner's process a) Thermal stability b) Basic character c) Down's process 32. The correct order of solubility of the sulphates c) Solubility in water d)All of these 22. Gypsum is: of alkaline earth metals in water is a) Be > Ca > Mg > Ba> Sr b) Mg > Be > Ba > Ca> Sra) MgSO₄ \cdot 7H₂O b) CaSO₄ \cdot H₂O c) CaSO₄ \cdot 2H₂O d) CaSO₄ \cdot 3H₂O c) Be > Mg > Ca > Sr> Ba d) Mg > Ca > Ba > Be> Sr23. A mixture contains two moles of Na_2CO_3 and 1 mole of Li_2CO_3 . What will be the volume of CO_2 formed on heating this mixture and the data is 33. Which of the following ions, will have maximum hydration energy? converted to STP? a) Sr^{2+} a) 22.4 L b)44.8 L c) 50.2 L d)11.2 L c) Ca2+ 24. In between the metals *A* and *B*, both form 34. The first ionization energies of alkaline earth oxide but *B* also forms nitride, when both burn metals are higher than those of the alkali in air. So A and B are: metals. This is because: a) Cs, K b) Mg, Ca a) There is increase in b) There is decrease in c) Li, Na d) K, Mg the nuclear charge of the nuclear charge of 25. Identify the correct formula of halides of the alkaline earth alkaline earth metals from the following metals a) BaCl₂ \cdot 6H₂O b) CaCl₂ \cdot 6H₂O c) There is no change d) None of the above d) SrCl₂ \cdot 4H₂O c) $BaCl_2 \cdot 4H_2O$ in the nuclear charge 35. Which chloride is covalent and soluble in

energy

sulphates does not

more predominant

role than hydration

liberated at cathode

liberated at anode

vary significantly

d)lattice energy plays

energy

ionb) Dihydrogen

b) Leblanc d)Haber

b) $LiAlH_4 + HCl$

d) $LiAlH_3 + HCl$

b)Cement

d)Pigment

b) Ba²⁺

 $d)Mg^{2+}$

the alkaline earth

Page 2

metals

b) Cyanide process

d)Both (b) and (c)

rapidly

of

is

is

26. Solubility of alkaline earth metal sulphates decreases down the group 2 because

	ether?			insoluble hydroxide	$M(OH)_2$ which is soluble
	a) BeCl ₂	b) CaCl ₂		in NaOH solution. Th	ien, M is
	c) CrCl ₃	d) BaCl ₂		a) Be	b) Ba
36.	Mortar is a mixture of			c) Ca	d)Mg
	a) Cement, sand and	b) MaCl tax and lime	46.	Milk of lime is:	
	water	D MgCl ₂ , tar and lime		a) CaCO ₃	b)CaHCO ₃
	c) Lime, Portland	d)None of the above		c) Ca(OH) ₂	d) CaSO ₄ · 2H ₂ O
	cement and water		47.	In the Castner's pro	ocess for the extraction of
37.	An aqueous solution o	f KI does not give a		sodium, the anode is	made of metal
	precipitate with:			a) Sodium	b) Nickel
	a) Mg ²⁺	b) Pb ²⁺		c) Copper	d)Iron
	c) Hg ²⁺	d)Cu ²⁺	48.	The cation which for	ms a yellow precipitate
38.	The characteristic colo	ours given by calcium,		with potassium chro	mate in acetic acid is:
	strontium and barium	in the flame test are		a) NH ₄ +	b) Ba ²⁺
	respectively			c) Ca ²⁺	d)Na ⁺
	a) Brick red, apple	b) Crimson, apple	49.	Which reagent woul	d enable you to remove
	green, crimson	green, brick red		SO_4^{2-} ions from solut	ion containing both SO_4^{2-}
	c) Crimson, brick red,	d)Brick red, crimson,		and Cl ⁻ ions?	
	apple green	apple green		a) NaOH	b) Pb ²⁺
39.	The substance used as	pigment in paint is		c) $Ba(OH)_2$	d)BaSO₄
	a) Borax	b)Alumina	50.	Which of the followi	ng is different from the
	c) Lithopone	d)None of these		other three?	0
40.	Which will react with	acid and alkalies both		a) MgO	b)SnO
	<i>i.e.,</i> (amphoteric)			c) ZnO	d) Cr_2O_3
	a) MgO	b)CaO	51.	Blanc fixe used in pa	ints is:
	c) BaO	d)BeO		a) Finely divided Bas	50_4 b)Paste of Ba(OH) ₂
41.	Crude sodium chloride	e is generally obtained by		Suspension of	
	crystallisation of			$^{\rm CJ}$ Ca(OH) ₂	d) MgCl ₂ · 5MgO · 5H ₂ O
	a) NH ₄ Cl solution	b)NaOH solution	52.	The electronic con	figuration of metal M is
	c) brine solution	d)None of these		1s ² , 2s ² 2p ⁶ , 3s ¹ . The	formula of its oxide would
42.	Which is not true in re	espect of berryllium		be	
	chemistry?			a) MO	b) M ₂ 0
	a) Beryllium is	b. It forms unusual		c) $M_2 O_3$	d)MO ₂
	amphoteric	^{DJ} carbide Be ₂ C	53.	A firework gave brig	ht crimson light. It is
	c) $P_{0}(\Omega U)$ is basis	d)Beryllium halides are		probably a salt of:	
	$C_{j} De(OII)_{2}$ is basic	electron deficient		a) Ca	b)Sr
43.	Calcium is obtained by	7		c) Ba	d)Mg
	Electrolysis	ofb) Roasting of lime	54.	From which mineral	Ra is obtained?
	^{a)} molten CaCl ₂	stone		a) Limestone	b) Rutile
	Reduction of CaC	Electrolysis of a		c) Pitch blende	d)Haematite
	c) with carbon	² d)solution of $CaCl_2$ in	55.	What are the produc	ts formed when an
	with carbon	water		aqueous solution of	magnesium bicarbonate is
44.	Setting of plaster of Pa	aris involves		boiled?	
	a) Oxidation with	b. Combination with		a) MgO, H_2O , CO_2	b) Mg(HCO ₃) ₂ , H ₂ O
	atmospheric oxyger	0 atmospheric CO ₂		c) $Mg(OH)_2$, H_2O	d) Mg, CO ₂ , H ₂ O
	c) Dehydration	d)Hydration to yield	56.	Which of the fol	lowing is used in the
		another hydrate		preparation of cakes	and pastries?
45.	A metal <i>M</i> readily form	ns its sulphate <i>M</i> SO ₄		a) Sodium hydrog	genb)Sodium carbonate
	which is water soluble	e. It forms its oxide <i>M</i> O		carbonate	
	which becomes inert of	on heating. It forms its		c) Sodium hydroxide	d)Potassium hydroxide

	d)Na ⁺
gent would e	nable vou to remove
from solutio	n containing both SO_4^{2-}
ns?	0
	b) Pb^{2+}
	d)BaSO₄
² he following	is different from the
e?	
	b)SnO
	$d)Cr_2O_3$
used in pain	ts is:
ivided BaSO	₄ b)Paste of Ba(OH) ₂
sion of	
2	$u_{1}mgu_{2} \cdot 5mg0 \cdot 5n_{2}0$
ronic config	uration of metal M is
⁶ , 3s ¹ . The fo	rmula of its oxide would
	b) M ₂ 0
	d)MO ₂
k gave bright	crimson light. It is
a salt of:	
	b)Sr
	d)Mg
ch mineral Ra	a is obtained?
ne	b)Rutile
ende	d)Haematite
the products	formed when an
olution of ma	ignesium bicarbonate is
0.00	h) Mg(H(O ₂) ₂ H ₂ O
$h_{\rm a}$ H _a O	d) Mg CO ₂ , H ₂ O
f the follo	wing is used in the
on of cakes a	nd nastries?
hvdrogei	h) Sodium carbonate
ite	is je our and on bonate
hvdroxide	d)Potassium hvdroxide
,	· , · · · · · · · · · · · · · · · · · ·

57. Which of the following metal carbonates is decomposed on heating? a) Na_2CO_3 b) MgCO₃ c) K_2CO_3 d) Rb_2CO_3 58. Which of the following hydroxides is insoluble in water? a) $Ba(OH)_2$ b)Ca $(OH)_2$ c) $Be(OH)_2$ $d)Mg(OH)_2$ 59. Which of the following is an epsom salt? a) $2CaSO_4$. H₂O b) MgSO₄.7H₂O c) MgSO₄ \cdot 2H₂O d) $BaSO_4 \cdot 2H_2O$ 60. Which metal dissolves in NaOH with the evolution of H₂? a) Be b)Ca d)Sr c) Mg 61. One mole of magnesium nitride on the reaction with an excess of water gives b) Two moles of NH₃ a) One mole of NH_3 c) One mole of HNO_3 d) Two moles of HNO₃ 62. Which of the following hydroxides is amphoteric in nature? a) $Be(OH)_2$ b) Mg(OH)₂ c) $Ca(OH)_2$ d) $Ba(OH)_2$ 63. Correct order of decreasing covalent character in metal halides is a) Lil > LiBr > LiCl b) LiCl > LiBr > Lilc) LiBr > Lil > LiCl d)LiBr > LiCl > Lil 64. The biggest ion is: a) Al³⁺ b) Ba^{2+} $d)Mg^{2+}$ c) Na⁺ 65. Flash bulbs contain wire or foil of Mg packed in an atmosphere of: a) SO_3 b) 0_{2} c) Air d) N_2 66. Element found in plant systems which forms an important constituent of photosynthesis is: a) Fe b)Cu c) Na d)Mg 67. When sodium chloride solution is electrolysed, the gas that is liberated at the cathode is a) Oxygen b) Chlorine d)Air c) Hydrogen 68. The compound which is insoluble in hot water and NH₃ is: a) $PbCl_2$ b)AgCl c) BaSO₄ d) None of these 69. Which of the following on thermal decomposition yields a basic as well as an acidic oxide? a) KClO₃ b)CaCO₃

	c) NH ₄ NO ₃	d) NaNO ₃
70.	On strong heating MgC	l_2 . 6H ₂ O, the product
	obtained is	
	a) MgCl ₂	b)MgO
	c) MgCl ₂ \cdot 2H ₂ O	d) MgCl ₂ . $4H_2O$
71.	A radioactive element	X decays giving two
	inert gases is:	
	a) $\frac{238}{238}$	h) 226 Ra
	c) 239 Th	d) $\frac{227}{3}$ Nn
72	Which of the follow	ing pair cannot exist
12.	together in colution?	ling pair calmot exist
	a) Na CO and NaUCO	b) NoUCO and NoOU
	a) Na CO and NaOU	d) NaOU and NaOl
70	C) $Na_2 CO_3$ and $NaOH$	
/3.	The solubility in water	of sulphates down the
	Be group is Be > Mg >	Ca > Sr > Ba. This is
	due to:	
	a) increase in m. p.	b) High ionisation
		energy
	c) Higher co-ordination	nd) All of the above
	number	
74.	Lattice energy (numer	ical value) of chloride of
	alkali metals is in order	r of
	LiCl > NaCl > KCl > a)	b LICI < NaCI < KCI <
	$^{\circ}$ RbCl > CsCl	$^{\circ}$ RbCl $<$ CsCl
	NaCl $<$ KCl $<$ LiCl $<$	d NaCl < KCl < RbCl < d
	² RbCl < CsCl	^s CsCl < LiCl
75.	Which of the follow	ing formula represents
	lithium imide?	
	a) LiNH ₂	b)Li ₂ NH
	c) Li ₃ N	d)LiNH
76.	Which of the compound	ds of cement sets at the
	slowest rate?	
	a) Dicalcium silicate	b) Tricalcium silicate
	c) Tricalcium	d)Tetracalcium
	aluminate	aluminoferrate
77.	When NaOH is made,	the gas released at the
	cathode is	
	a) Cl ₂	b)H ₂
	c) 0_2	d)H ₂ 0
78.	A substance which give	ves brick red flame and
	breaks down on heating	ng to give oxygen and a
	brown gas is	
	a) magnesium nitrate	b) calcium nitrate
	c) barium nitrate	d) strontium nitrate
79.	Which of the following	metal carbonates
	decomposes on heating	g?
	a) MgCO ₃	b)Na ₂ CO ₃
	c) K ₂ CO ₃	d)Rb ₂ CO ₃
80.	The wire of flash bulbs	are made up of:
	a) Mg	b)Ba

	c) Cu	d)Ag		c) reducing agent	d)either oxidising or
81.	The correct order of h	ydration energy of			reducing agent
	alkaline earth metal ic	ons is:	91.	The diagonal relation	nship in Be and Al is due to
	$Be^{2+} > Mg^{2+}$	$\mathbf{D}_{2}^{2+} \times \mathbf{D}_{2}^{2+} \times \mathbf{C}_{2}^{2+}$		a) similar ionisat	ionb)similar metallic
	a) > Ca^{2+} > Sr^{2+}	b) $Ma^{2+} > Sa^{2+}$		enthalpy	character
	$> Ba^{2+}$	> Mg ⁻ > Sr ⁻		c) similar ionic size a	andd)similar
	$Mg^{2+} > Be^{2+}$	d)None of the above		charge/radius rat	io electronegativity
	c) > $Ba^{2+} > Ca^{2+}$		92.	Which out of the foll	owing statements is not
	$> Sr^{2+}$			correct for anhydrou	is calcium chloride?
82.	When magnesium is b	urnt in air, compounds of		a) It is prepared by	
	magnesium formed ar	e magnesium oxide and:		heating hydrated	Lt is used for drying
	a) MgCO ₃	b) $Mg(NO_2)_2$		calcium chloride	0 alcohols and $\rm NH_3$
	c) Mg(NO ₃) ₂	d) Mg_3N_2		above 533 K	
83.	Celestine is an ore of:			c) It is used as a	d) When mixed in
	a) Ba	b)Ca		dehydrating agent	t to concrete, it gives
	c) Sr	d) Mg		control snow and	ice quicker initial setting
84.	The second ionisation	enthalpy of the alkaline		on highway and	and improves its
	earth metals are	smaller than that of		pavements	strength
	corresponding group	I metals. This is due to	93.	Which of the followi	ng is not an ore of
	a) large size of alka	lib)stable configuration		magnesium?	
	metals	of alkali metal ions		a) Carnallite	b) Dolomite
	c) small size of alkalin	ed)stable configuration		c) Calamine	d)Sea water
	earth metals	of alkaline earth	94.	Element A burns in	nitrogen to give an ionic
		metal monocation		compound B. Compo	ound B reacts with water lo
85.	Nitrogen dioxide ca	annot be prepared by		give C and D. The so	olution of C becomes milky
	heating			on bubbling carbon	dioxide. The element A is
	a) KNO ₃	$b)Pb(NO_3)_2$		a) Li	b) Mg
	c) $Cu(NO_3)_2$	d)AgNO ₃		c) Ca	d)Be
86.	NaOH is not used in		95.	The metal ion, that p	olays an important role in
	a) paper industry	b) soap industry		muscle contraction,	is
	c) rayon industry	d) plastic industry		a) Be^{2+}	b) Mg ²⁺
87.	Which of the following	g compounds has the		c) Ca ²⁺	d)Ba ²⁺
	lowest melting point?		96.	A metal M forms a	water soluble MSO_4 and
	a) CaF ₂	b) CaCl ₂		inert MO. MO in	aqueous solution forms
00	c) CaBr ₂	d)Cal ₂		Insoluble $M(OH)_2$, so	bluble in NaOH. Metal M IS
88.	In the hardening stage	e of plaster of Paris, the		a) Ge	d) Su
	compound formed is	O dha dha ab'a	07	CJ La Diastan of Davis on w	ujsi alving nagta with little
	a) CaSO ₄	b)	97.	Plaster of Paris off fi	aking paste with little
		$Lasu_4 \cdot 2H_2U$			$h)C_{2}C_{2}C_{1}$
	c) CaSO ₄ . H_2O	d) $(220 - 211 - 0)$		$a_1 CasO_4$	d) $C_{2}SO = 2H = O$
90	Sodium hydrovido	$LasU_4 \cdot 2\Pi_2 U$	98	H_{V} drogen gas is lik	$u_1 c_{a304} \cdot 211_2 0$
09.	oloctrolycic of codiw	is prepared by the	50.	sodium hydrovide w	with
	the electrodes used a	s cathode and anode are		a) (O.	$h)7n(l_{a})$
	respectively	s cathoue and anoue are		$a) CO_2$	d)7n
	a) mercury an	dh)nlatinum and	99	What is A in the follo	wing reaction
	nlatinum	mercury	,,,,	LiAIH \checkmark + PCl ₂ \rightarrow A+	$AlCl_3 + LiCl$
	c) mercury and carbor	1 d) carbon and mercury		a) $POCl_2$	b)PH ₂
90	LiAlH ₄ act as	. a jour son und mer cur y		c) PH_2	d)PH₄
20.	a) oxidising agent	b) hydroxylating agent	100).Beryllium shows dia	gonal relationship with
	a, on a one of the	2 July at ony lating agent	1 -50	- ,	0 · · · · · · · · · · · · · · · · · · ·

a) Mg b)Na c) B d)Al 101. Which statement is correct for alkaline earth metals? They are diatomic b) They are highly a) and form ions of the electronegative type M^{2-} elements They are They are diatomic monoatomic and d) and form ions of the c) form ions of the type type M^{2+} M^{2+} 102. Milk of magnesia is: a) $Mg(OH)_2$ b) $Ca(OH)_2$ d) None of these c) $Ba(OH)_2$ 103. The oxide, which is best soluble in H_2O is a) $Ba(OH)_2$ b) Sr(OH)₂ c) $Ca(OH)_2$ d)Mg(OH)₂ 104. In aqueous solution the most stable sulphate is b) MgSO₄ a) BeSO₄ c) CaSO₄ d)BaSO₄ 105. In the manufacture of NaOH by the electrolysis of NaCl solution, the cathode and anode are separated using a diaphragm because It prevents the It prevents the a) reaction between H₂b) mixing of NaOH and and Cl₂ formed NaCl It prevents the c) reaction between Nad) it increases the yield of NaOH and Cl₂. 106. The carbonates and hydrogen carbonates of alkali metals are highly stable. Their stability a) decreases from topb) increases from top to to bottom bottom c) remains same d)does not follow a regular trend in the group 107.Dolomite is a carbonate ore of: a) Ca b)Mg c) Both Ca and Mg d) Neither Ca nor Mg 108. The compound *X* on heating gives a colourless gas. The residue is dissolved in water to obtain Y. Excess CO_2 is bubbled through aqueous solution of *Y*, *Z* is formed. *Z* on gentle heating gives back X. The compound X is: a) $CaCO_3$ b) Na_2CO_3 c) CaSO₄ \cdot 2H₂O $d K_2 CO_3$ 109. Iceland spar is: a) CaSiO₄ b)CaCO₃ c) CaF_2 d) NaAIF₆ 110.Magnesium form Mg²⁺ and not Mg⁺ because:

a) Magnesium (II) b) Generally higher carbonate is oxidation states are insoluble in water preferred by metals c) Ionic radius of d)Hydration energy of Mg(II) is smaller divalent magnesium than of Mg (I) ion is higher 111. Scarlet flame colour of Bunsen flame is characteristic of: a) Sn b)K d)Sr c) Sb 112. Least abundant metal in IIA group is: a) Sr b)Ca c) Ra d)Be 113. The reducing power of a metal depends on various factors. Suggest the factor which makes Li, the strongest reducing agent in aqueous solution. a) Sublimation b) Ionisation enthalpy enthalpy c) Hydration enthalpy d) Electron gain enthalpy 114. Which of the following will liberate hydrogen by its reaction with hydrochloric acid? a) Copper b) Phosphorus c) Mercury d)Magnesium 115. Hesenclever's process is a method for the manufacture of: a) NaOH b) HNO_3 d) Bleaching powder c) H_2SO_4 116. The correct trend of melting point and boiling point of alkali metal halides is a) fluoride > chloride b) fluoride < chloride > > bromide > iodide b) bromide < iodide c) fluoride < chloride di iodide < fluoride < c) c) chloride < iodide chloride < bromide 117.Soda lime is a) NaOH b) NaOH and CaO c) CaO d)Na₂CO₃ 118. The chemical formula of plaster of Paris is a) CaSO₄ . $\frac{1}{2}$ H₂O b) CaSO₄ \cdot H₂O c) $CaSO_4 \cdot 2H_2O$ d) CaSO₄. $3H_2O$ 119. Magnesium wire burns in the atmosphere of CO₂ because: a) Magnesium acts as b) Magnesium has 2 an oxidizing agent electrons in the outermost orbit Magnesium acts as a d) None of the above reducing agent and removes oxygen from CO₂

120. Which is used to rem	nove N_2 from air?
a) Mg	b)P
c) H_2SO_4	d)CaCl ₂
121.Identify the correct s	statement.
Elemental sodi	um
can be prepared a	and _, _, _, _,
isolated	by,
a) electrolysing	b) strong oxidising
aqueous solution	of
NaCl	
Elemental Na	is Elemental Na is
c) insoluble in NH ₃	d) easily oxidized
122.Melting point is high	est for:
a) Be	b) Mg
c) Sr	d)Ca
123.Identify the weakest	oxidising agent among the
following	00000
a) Li ⁺	b)Na ⁺
c) Cd^{2+}	d) I ₂
124.Several blocks of Mg	are fixed to the bottom of
a ship to:	
a) Prevent action of	b)Prevent puncturing
water and salt	by under sea rocks
c) Keep away the	d) Make the ship lighter
charles	,
Silal KS	
125.Calcium is obtained	by
125.Calcium is obtained	by Electrolysis of
Electrolysis of	by Electrolysis of b) solution of CaCl ₂ in
a) 125.Calcium is obtained Electrolysis of molten CaCl ₂	by Electrolysis of b) solution of CaCl ₂ in water
125.Calcium is obtained a) Electrolysis of molten $CaCl_2$	by Electrolysis of b) solution of CaCl ₂ in water 2 d) Roasting of lime
a) Reduction of CaCl ₂ with carbon	by Electrolysis of b) solution of CaCl ₂ in water 2 d) Roasting of lime stone
a) Reduction of CaCl ₂ with carbon 126.0n dissolving mod	by Electrolysis of b) solution of CaCl ₂ in water 2 d) Roasting of lime stone erate amount of sodium
125.Calcium is obtained a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃	by Electrolysis of b) solution of CaCl ₂ in water 2 d) Roasting of lime stone erate amount of sodium at low temperature, which
125.Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur?
125.Calcium is obtained a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red _b Na ⁺ ions are formed
125.Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red Na ⁺ ions are formed ed in the solution
125.Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) na ⁺ ions are formed ed in the solution ion
125.Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) in the solution ion bod Liquid NH ₃ solution
125.Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red Na ⁺ ions are formed ed b) in the solution ion bod Liquid NH ₃ solution of remains diamagnetic
125.Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) na ⁺ ions are formed ed in the solution ion bod Liquid NH ₃ solution of remains diamagnetic
125.Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity 127.Gypsum on heating a	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) in the solution ion bod Liquid NH ₃ solution of remains diamagnetic
125. Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126. On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity 127. Gypsum on heating a a) Hemihydrate	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red Na ⁺ ions are formed ed in the solution ion bod Liquid NH ₃ solution of remains diamagnetic at 120-230°C gives: b) Monohydrate
125. Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126. On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity 127. Gypsum on heating a a) Hemihydrate c) Dehydrates	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) in the solution ion bod Liquid NH ₃ solution of remains diamagnetic at 120-230°C gives: b) Monohydrate d) Anhydrous salt
125.Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126.On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity 127.Gypsum on heating a a) Hemihydrate c) Dehydrates 128.A solid is a compound	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red Na ⁺ ions are formed ed b) in the solution ion bod Liquid NH ₃ solution of remains diamagnetic at 120-230°C gives: b) Monohydrate d) Anhydrous salt d of group 1 element and
125. Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126. On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity 127. Gypsum on heating a a) Hemihydrate c) Dehydrates 128. A solid is a compound it gives a bright red of a) Starks	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) in the solution ion bod Liquid NH ₃ solution of remains diamagnetic at 120-230°C gives: b) Monohydrate d) Anhydrous salt d of group 1 element and colour in the flame test.
125. Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126. On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity 127. Gypsum on heating a a) Hemihydrate c) Dehydrates 128. A solid is a compound it gives a bright red of The solid is	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red Na ⁺ ions are formed b) in the solution ion od Liquid NH ₃ solution of remains diamagnetic at 120-230°C gives: b) Monohydrate d) Anhydrous salt d of group 1 element and colour in the flame test.
125. Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126. On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity 127. Gypsum on heating a a) Hemihydrate c) Dehydrates 128. A solid is a compound it gives a bright red of The solid is a) LiBr	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) na ⁺ ions are formed ed in the solution ion bod Liquid NH ₃ solution of remains diamagnetic at 120-230°C gives: b) Monohydrate d) Anhydrous salt d of group 1 element and colour in the flame test. b) CsCl
125. Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126. On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut c) becomes go conductor electricity 127. Gypsum on heating a a) Hemihydrate c) Dehydrates 128. A solid is a compound it gives a bright red of The solid is a) LiBr c) KCl	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) na ⁺ ions are formed ed b) in the solution ion od Liquid NH ₃ solution of remains diamagnetic at 120-230°C gives: b) Monohydrate d) Anhydrous salt d of group 1 element and colour in the flame test. b) CsCl d) NaCl
125. Calcium is obtained l a) Electrolysis of molten CaCl ₂ c) Reduction of CaCl ₂ with carbon 126. On dissolving mod metal in liquid NH ₃ one of the following a) Blue colour solution is obtained Liquid NH ₃ solut becomes go conductor electricity 127. Gypsum on heating a a) Hemihydrate c) Dehydrates 128. A solid is a compound it gives a bright red of The solid is a) LiBr c) KCl 129. In the alkaline earth	by Electrolysis of b) solution of CaCl ₂ in water d) Roasting of lime stone erate amount of sodium at low temperature, which does not occur? red b) in the solution ion bod Liquid NH ₃ solution of remains diamagnetic at 120-230°C gives: b) Monohydrate d) Anhydrous salt d of group 1 element and colour in the flame test. b) CsCl d) NaCl metals, the element

a) Ca	b)Sr
c) Mg	d) Be
130.Which is quick lime?	
a) CaCO ₃	b)Ca(OH) ₂ + H_2O
c) $Ca(OH)_2$	d)CaO
131.Barium burns in air to	form
a) Ba_2O_2	b) BaO ₂
c) $Ba(OH)_2$	d)BaO
132. The compound which	liberate(s) a mixture of
NO_2 and O_2 on heating	is
a) LiOH	b)NaOH
c) LiNO₃	d)Li ₂ CO ₃
133.Which of the following	g compounds of sodium
is the most basic?	
a) Na ₂ CO ₃	b) NaHCO ₃
c) NaOH	d)All are equally basic
134. Ionic compound BaSO	is insoluble in water
due to	
a) High lattice energy	b)Low lattice energy
c) Low hydration	d) Both (a) and (c)
energy	
135. The alkali metals ha	ve low melting points.
Which of the following	alkali metal is expected
to melt. if the room ten	perature rises to 30°C?
a) Na	h)K
c) Rb	d)Cs
136. In which of the followi	ng reactions. MgO is not
formed?	
a) Mg + $CO_2 \rightarrow$	h) Mg + dil, HNO ₂ \rightarrow
Δ	d)Ma + P = 0
$O Mg + NO \longrightarrow$	$U_1Mg + D_2O_3 \rightarrow$
137.Beryllium and alur	ninium exhibit many
properties which are	e similar but the two
elements differ in	
a) exhibiting maximun	nb) forming polymeric
covalency ii	n hydrides
compounds	
c) forming covalen	taJexhibiting
halides	amphoteric nature in
	their oxides
138.A substance which give	es a brick red flame and
breaks down on heatin	g giving oxygen and a
brown gas is:	
a) Calcium carbonate	b) Magnesium nitrate
c) Magnesium	d)Calcium nitrate
carbonate	
139. Chlorine reacts with 'X	" to form bleaching
powder. 'X' is	
a) Dry slaked lime	b) Sodium hydroxide
c) Acetone	d)Chloral
140 Which category of salts	s of alkaline earth metals

is not found in solid state, but found in solution state? a) Carbonates b) Bicarbonates c) Hydroxides d)Sulphates 141. Which of the following alkaline earth metal sulphate has hydration enthalpy by higher than its lattice enthalpy: b)BeSO₄ a) CaSO₄ c) BaSO₄ d)SrSO₄ 142. Thomas slag is a) $Ca_3(PO_4)_2 \cdot 2H_2O$ b) $Ca_3(PO_4)_2$. CaSiO₃ c) MgSiO₃ d)CaSiO₃ 143. The active constituent of bleaching powder is: b)Ca(OCl)Cl a) $Ca(OCI)_2$ c) Ca(ClO₂)₂ d)Ca(ClO₂)Cl 144. The correct increasing covalent character is: a) NaCl < LiCl < BeCl₂ b) BeCl₂ < NaCl < LiCl c) BeCl₂ < LiCl < NaCl d) LiCl < NaCl < BeCl₂ 145. Which can undergo both oxidation and reduction? a) Ba^{2+} b) $BaCl_2$ c) Ba⁺ d) BaH_2 146.H₂O is dipolar whereas BeF₂ is not. It is because: a) The H₂O involves Hb) $\frac{\text{bonding whereas}}{\text{BeF}_2}$ is discrete electronegativity of F is greater than 0 molecule d) $\frac{H_2O}{BeF_2}$ is linear c) $\frac{H_2O}{BeF_2}$ is angular 147. Which of the following exists in polymeric form? b) $BeCl_2$ a) AlCl₃ d)SiC c) B_2H_6 148.Who discovered radium? a) Bohr b) Fermi c) Curie d)Rutherford 149. The most reactive element among the following is: b)Ca a) Mg c) Sr d)Ba 150.At high temperature nitrogen combines with CaC₂ to give: a) Calcium cyanide b) Calcium cyanamide c) Calcium carbonate d) Calcium nitride 151. Which among the following sets of compounds is used as raw material for the preparation of sodium carbonate by Solvay process? a) NaOH₁HCl, CO_2 b) NH_4Cl , H_2O , NaClc) NaCl, NH₃, Ca(OH)₂ d) NaCl, CaCO₃, H₂SO₄

152. Some of the group II metal halides are covalent and soluble in organic solvents. Among the following metal halides, the one which is soluble in ethanol is a) $BeCl_2$ b) MgCl₂ c) $CaCl_2$ d) $SrCl_2$ 153.Baryta water is: a) BaO b)Ca(OH)₂ c) $Ba(OH)_2$ d)BaSO₄ 154. The element that forms a solid basic oxide at room temperature is: b)S a) Mg c) H d)P $155.Be(OH)_2$ is insoluble in water, while $Ba(OH)_2$ is highly soluble due to b) Common ion effect a) Lattice energy difference c) Bond order d)Hard acid 156. Milk of magnesia is used as a) Antichlor b)Antacid c) Antiseptic d)Food preservative 157. Superphosphate of lime is a mixture of: a) Primary calcium b) Primary magnesium phosphate and phosphate and Epsom Epsom c) Primary magnesium d) Primary calcium phosphate and phosphate and gypsum gypsum 158. Which alkaline earth metal forms peroxide on burning in air? a) Be b)Ca c) Sr d)Ba 159. Choose the correct option from the codes given below regarding elements and their characteristics colour given in Column I and Column II respectively of the following table. Column II Column Ι А Li 1 Crimson red 2 Yellow В Na С k 3 Red violet D Rb 4 Blue 5 Violet

Codes

А

В

С

D

	aj	2	T	3	5b)	1	Z	4	3				
	c)	1	2	5	3d)	1	2	3	4				
1	160.Whic	ch com	poun	d giv	es acety	lene o	on rea	actio	n				
	with water?												
	a) Al	4C3			b)Mg	2N2							
	c) Ca	C_2			d)Cal	12 12							
1	, 161.Whio	ch of t	he fo	llowi	ing com	pound	ls is	used	l in				
	gun i	oowde	r?		0	-							
	a) Na	NO ₂			b) KN	02							
	c) Lil	NO_2			d) No	ne of t	hese						
1	162.Amo	ng Rb(Cl. Be	Cla. N	/IgCl ₂ , Li	Cl. the	e com	noou	nds				
	with	leas	, tan	d a	reatest	ioni	c cl	iarac	ter				
	resp	ectivel	v are	Ľ									
	a) Rb	Cl and	l LiCl		b) Mg	Cl ₂ an	d Rb	Cl					
	c) Be	Cl ₂ an	d Rb(21	d)Be	$2l_2$ an	d LiC	1					
1	163.Whio	ch com	pone	nt of	cement	sets a	t the						
	slow	est rat	e?										
	a) Di	calciu	n silio	cate	b) Tri	calciu	m sil	icate					
	c) Tr	icalciu	m		d) Tet	racal	cium						
	alı	uminat	te		alu	mino	ferri	te					
1	164.The	alkali	ne ea	rth	metals	have	smal	ler s	size				
	than	those	of co	rresp	onding	alkali	met	als. T	'his				
	is du	e to											
	a) ind	crease			inb)deo	rease	in	nucl	ear				
	ioi	nisatio	n ent	halp	y cha	rge							
	c) ind	crease	in 1	nucle	eard)inc	rease	in	num	ber				
	ch	arge			of s	shells							
	CII	arge											
1	L65.Phot	oelect	ric eff	ect is	s maxim	um in							
1	L65.Phot a)Cs	oelect	ric eff	ect is	s maxim b) Na	um in							
1	l65.Phot a)Cs c)K	oelect	ric eff	ect is	s maxim b) Na d) Li	um in							
1	165.Phot a) Cs c) K 166.Lithi	oelect	ric eff eing x	ect is	s maxim b) Na d) Li small ir	um in 1 size,	, pol	arise	s a				
1	165.Phot a) Cs c) K 166.Lithi large	oelect um be CO_3^{2-}	ric eff eing v	ect is very lead	s maxim b) Na d) Li small ir ling to	um in 1 size, the f	, pol	arise ation	s a of				
1	165.Phot a)Cs c)K 166.Lithi large more	oelect um be CO_3^{2-} e stabl	ric eff eing x - ion e	ect is very lead	s maxim b)Na d)Li small ir ling to	um in 1 size, the f	, pol	arise	s a of				
1	165.Phot a) Cs c) K 166.Lithi large more a) Li ₂	um be collect $CO_3^{2^-}$ e stabl	ric eff eing x ion e CO	ery lead	s maxim b) Na d) Li small ir ding to b) Li ₂	um in 1 size, the f 0 and	, pol Forma CO ₂	arise	s a of				
1	165.Phot a) Cs c) K 166.Lithi large more a) Li ₂ c) Li ₂	um be e CO_3^{-2} e stabl ${}_2O$ and ${}_2O_2$ an	ric eff eing x ion e CO d CO	very lead	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC	um in size, the f 0 and) and (, pol Forma CO ₂ CO ₂	arise	s a of				
1	165.Phot a) Cs c) K 166.Lithi large more a) Li ₂ c) Li ₂ 167.The a	um be coelect CO_3^2 stabl $_2O$ and $_2O_2$ an action	ric eff eing v ion e CO d CO of dil	ery lead	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on	um in size, the f 0 and and 0 magn	, pol Forma CO ₂ CO ₂ esiun	arise ation m giv	s a of res:				
1	165.Phot a) Cs c) K 166.Lithi large more a) Li ₂ c) Li ₂ 167.The a a) N(um be coelect cO_3^2 coestable $coestable coestable coestablecoestable coestablecoest$	ric eff eing v ion e CO d CO of dil	ery lead	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on b) H ₂	um in size the f 0 and 0 magn	, pol forma CO ₂ CO ₂ esiun	arise ation m giv	s a of res:				
1	165.Phot a) Cs c) K 166.Lithi large more a) Li ₂ c) Li ₂ 167.The a a) N(c) N(um be e CO_3^2 e stabl ${}_2O$ and ${}_2O_2$ an action O_2	ric eff eing v ion e CO d CO of dil	ect is very lead	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) NH	um in size, the f 0 and and 0 magn 4NO ₃	, pol. Forma CO ₂ CO ₂ esiun	arise ation m giv	s a of ves:				
1	(165. Phot a) Cs c) K 166. Lithi large more a) Li ₂ c) Li ₂ 167. The a a) N(c) N(168. The	um be collect co	ric eff eing v ion e CO d CO of dil et ord	very lead ute H	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) NH f solubil	um in size, the f 0 and 0 and 0 magn 4NO ₃ ity of	, pol Forma CO ₂ CO ₂ esiun alka	arise ation m giv li me	s a of res:				
1	165.Phot a) Cs c) K 166.Lithi large more a) Li ₂ c) Li ₂ 167.The a a) N(c) N(168.The fluor	um be e CO_3^{2-} e stable 20 and 20 and 20_2 an action 0 02 correctides in	ric eff eing v ion e CO d CO of dil et ord	er of er is	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) NH f solubil	um in size, the f 0 and 0 and 0 magn ${}_{4}NO_{3}$ ity of	, pol forma CO ₂ CO ₂ esiun alka	arise ation m giv	s a of res: etal				
1	165.Phot a) Cs c) K 166.Lithi large more a) Li ₂ c) Li ₂ c) Li ₂ c) Li ₂ c) NC 167.The a a) NC c) NC 168.The fluor a) Cs Lil	um be collect CO_3^{2-} e stabl $_2O$ and $_2O_2$ an action D_2 correc ides ir F < F	ric eff eing v ion e CO d CO of dil et ord n wate NaF	er of er is KF	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) NH f solubil	um in 1 size_{1} the f 0 and 0 magn 4NO_{3} ity of $< < \frac{1}{2}$, pol Forma CO ₂ CO ₂ esiun alka KF <	arise ation m giv li me < Nal	s a of res: etal F <				
1	L65. Phot a) Cs c) K L66. Lithi large more a) Li ₂ c) Li ₂ L67. The a a) N(c) N(L68. The fluor a) Cs Lil CS LII CS	um be e CO_3^2 e stabl $_2O$ and $_2O_2$ an action O_2 correctides in F < F F < Na F	ric eff eing v ion e CO d CO of dil t ord NaF NaF < 1	er of er of er of er is KF <	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) NH f solubil f solubil	um in size, the f 0 and 0 and 0 magn ${}_{4}NO_{3}$ ity of ${}_{5}$ <	, pol forma CO ₂ CO ₂ esiun alka KF <	arise ation m giv li me < Nal < Nal	s a of res: etal F < F <				
1	165. Phot a) Cs c) K 166. Lithi large more a) Li ₂ c) Li ₂ 167. The a a) N(c) N(168. The fluor a) Cs Lil c) Lil Cs L69. Bariu	um be collect 2 CO_3^2 establ 2 O and 2 O_2 and action 2 O_2 correctides in 2 CO_2 rectifies 2 C_2 rectifies 2 C	ric eff eing v ion e CO d CO of dil t ord n wate NaF \sim aF < 1 extrac	very lead ute F er of er is < KF <	s maxim b) Na d) Li small ir ding to b) Li ₂ d) Li ² d) Li ² d) Li ² d) Li ² d) Li ² csF d) CsF d) LIF rom its o	um in 1 size the f 0 and 0 and	, pol forma CO ₂ cO ₂ esiun alka KF <	arise ation m giv li me < Nal < Nal	s a of res: etal F < F <				
1	Lifes. Phot a) Cs c) K Lifes. Lithi large more a) Li ₂ c) Li ₂ Lifor. The a a) N(c) N(Lifes. The fluor a) Cs Lifes. Lift Cs Lifes. Barin a) Dc	um be e CO_3^2 e stabl $_2O$ and $_2O_2$ an action O_2 correctides in F < S F < Na F um is e olomite	ric eff eing v ion e CO d CO of dil t ord NaF NaF < 1 extrace	ect is very lead ute H er of er is < KF < KF < ted f	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) NH f solubil f solubil f solubil csH d) LIF CsH d) LIF csH d) LIF	um in 1 size the f 0 and 0 and 0 magn 4NO_3 ity of 4NO_3 ity of 4C_3 4C_3	, pol forma CO ₂ CO ₂ esiun alka KF < KF <	arise ation m giv li me < Nal < Nal	s a of res: etal F < F <				
1	Loss Phot a) Cs c) K Loss Lithi large more a) Li ₂ c) Li ₂ c) Li ₂ c) Li ₂ c) Li ₂ c) Li ₂ Loss The fluor c) NC Loss The fluor a) Lil cs Loss Li cs Loss Loss Li cs Loss Li cs Loss Li cs Loss Li cs Loss Li cs Loss Loss Li cs Loss Loss Li cs Loss Loss Li cs Loss Loss Li cs Loss Loss Loss Loss Loss Loss Loss Los	um be coelect coelect color color $color color correccorreccorreccorreccorreccorrecF < NaF < NaFcolor color Fcolor color color Fcolor color color Fcolor color Fcolor color color Fcolor color color color color color color Fcolor color color color color Fcolor color $	ric eff eing v e l CO d CO of dil t ord n wate NaF \leq aF $<$ l extrace e e	very lead ute H er of er is < KF < KF < ted f	s maxim b) Na d) Li small ir ling to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) NH f solubil f solubil	um in size the f 0 and 0 and 0 magn 4NO ₃ ity of c c c c c c c c c c c c c c c c c c c	, pol forma CO ₂ CO ₂ esiun alka KF < KF <	arise ation m giv li me < Nal	s a of res: etal F < F <				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lifes. Phot a) Cs c) K Lifes. Lithi large more a) Li ₂ c) Li ₂ Lifes. The fluor c) NC Lifes. The fluor a) Cs Lifes. The fluor a) Lifes. Cs Lifes. Cs Lifes. Cs Lifes	um be e CO_3^2 e stabl $_2O$ and $_2O_2$ an action O_2 correctides in F < Na F < Na F um is e olomited rnallit metal p	ric eff eing v ion e CO d CO of dil t ord n wate NaF < 1 extrace e e orese	very lead ute F er of er is < KF < KF ted f nt in	s maxim b) Na d) Li small ir ding to b) Li ₂ d) Li ₂ csi d) Csi d) LIF rom its c b) Wi d) Gyj Grignar	um in size the f 0 and 0 and 0 magn 4NO ₃ ity of c c c c c c c c c c c c c c c c c c c	, pol forma CO ₂ cO ₂ esiun alka KF < KF < e	arise ation m giv li me < Nal < Nal s:	s a of res: etal F < F <				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Loss Phot a) Cs c) K Loss Lithi large more a) Li ₂ c) Li ₂ c) Li ₂ c) Li ₂ c) Li ₂ c) Li ₂ Loss The fluor c) NC Loss The fluor a) Lil Cs Loss Loss Lil Cs Loss Loss Lil Cs Loss Loss Loss Loss Loss Loss Loss Los	um be coelect coelect color color $color color correctcorrectcorrectcorrectcorrectcorrectcorrectF < Nature Fcolor color F < Nature Fcolor color colo$	ric eff eing v e l CO d CO of dil t ord n wate NaF aF < 1 extrace e orese	very lead ute H er of er is < KF XF < ted f nt in	s maxim b) Na d) Li small ir ling to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) NH f solubil f solubil	um in a size the f 0 and 0 and 0 magn 4NO ₃ ity of c < c < c < c < c < c < c < c <	, pol forma CO ₂ cO ₂ esiun alka KF < KF < e	arise ation m giv li me < Nal < Nal	s a of res: etal F < F <				
1	165. Phot a) Cs c) K 166. Lithi large more a) Li ₂ c) Li ₂ 167. The a a) N(c) N(168. The fluor a) Cs Lil c) Cs 169. Barit a) Dc c) Ca 170. The n a) Ca c) Zn	um be coelect coelect color color $color color correctcorrectcorrectcorrectcorrectcorrectcorrectcorrectF < Nature FF < Nature Fcolor color correctcorre$	ric eff eing v ion e CO d CO of dil t ord n wate NaF < 1 extrace e porese	ect is very lead ute F er of er is < KF KF < ted f nt in	s maxim b) Na d) Li small ir ding to b) Li ₂ d) LiC INO ₃ on b) H ₂ d) LiC INO ₃ on b) H ₂ d) LIF csF d) LiF csF csF d) CsF d) CsF d) CsF d) CsF csF d) CsF csF d) CsF csF d) CsF csF d) CsF csF d) CsF csF csF d) CsF csF csF csF csF csF csF csF csF csF c	um in size the f 0 and 0 and 0 magn 4NO ₃ ity of c c c c c c c c c c c c c c c c c c c	, pol forma CO ₂ cO ₂ esiun alka KF < KF < e gent i	arise ation m giv li me < Nal < Nal s:	s a of res: etal F < F <				

171.Which gives least	basic oxide?
a) Mg	b)Ba
c) Be	d)Ra
172. Alloys of which m	etal are light and strong and
are used in the ma	inufacture of aeroplane
parts?	-
a) Cr	b)Sn
c) Fe	d)Mg
173. Electrolysis of fus	ed KCl \cdot MgCl ₂ \cdot 6H ₂ O gives:
a) Potassium only	b) Magnesium only
c) Magnesium and	d)Potassium,
chlorine	magnesium and
	chlorine
174. Mixture of MgCl ₂ a	nd MgO is called
a) Portland cemen	t b) Sorel's cement
c) Double salt	d) None of these
175. The solubilities of	carbonates of magnesium
group decreases d	own due to decrease in:
a) Inter ionic	b) Entropy of solution
attractions	formation
c) Lattice energy	d) Hydration energy of
	cation
176.Hydrogen carbon	ate of lithium does not exist
in solid state due t	20
low polaris	ation low hydration
value of Li ⁺	^b energy of Li ⁺
c) high hydr	ation high polarisation
energy of Li ⁺	value of Li ⁺
177. Which of the foll	owing substances is used in
the laboratory for	fast drying of neutral gases?
a) Sodium sulphat	e b)Phosphorus
a) Cadium nhaanh	pentoxide
c) sodium prospri	chloride
178.Which one of the f	ollowing substances is used
in the laboratory f	or a fast drying of neutral
gases?	
a) Phosphorus	b) Active charcoal
pentoxide	
c) Anhydrous calc chloride	d)Na ₃ PO ₄
179.Which alkaline ear	rth metal is the most
abundant in the ea	arth's crust?
a) Mg	b)Ca
c) Sr	d)Ba
180.0xygen can be obt	ained by heating:
a) Na ₂ O	b) Fe_2O_3
c) Fe ₃ O ₄	d) BaO ₂
181.Bleaching powder	is obtained by interaction of
Cl ₂ and:	
a) dil. $Ca(OH)_2(aa)$	a) b)dry CaO

c) conc. $Ca(OH)_2(aq)$ d) Dry slaked lime
182. The most soluble halide in water is:
a) CaF ₂ b) CaCl ₂
c) CaBr ₂ d) CaI ₂
183.Crude sodium chloride obtained by
crystallisation of brine solution does not contain
a) MgSO ₄ b) Na ₂ SO ₄
c) MgCl ₂ d) CaSO ₄
184.Bleaching powder is obtained by the
interaction of chlorine and
a) Dry calcium oxide b) Dry slaked lime
c) conc. solution of Ca(Cd) dilute solution of Ca((
185.Sodium is heated in air at 350°C to form A.
Compound A when reacts with carbon dioxide
forms sodium carbonate and Y. Here, Y is
a) hydrogen peroxide b) hydrogen
c) ozone d) oxygen
186.A colour less salt X has 50%Na ₂ SO ₃ and
50%H ₂ O. How much of SO ₂ at NTP is obtained
when 2.52 g of X reacts with excess of dil.
H_2SO_4 ?
a) 22.4 L b) 0.448 L

c) 44.8 L d) 0.224 L

187. The highly efficient method of obtaining

beryllium is: a) Reduction of b) Reduction of beryllium halide beryllium oxide with with Mg carbon c) Electrolysis of fused d) Dissociation of beryllium chloride beryllium carbide 188. In which of the following the hydration energy is higher than the lattice energy? a) BaSO₄ b) MgSO₄ c) RaSO₄ d) $SrSO_4$ 189. The weakest base among NaOH, Ca(OH)₂, KOH and $Be(OH)_2$ is: a) NaOH b) $Ca(OH)_2$ d)Be(OH)₂ c) KOH 190.CaC₂ + N₂ \rightarrow *A*, product *A* is b) CaCN₂ and C a) CaCN₂ c) CaCN₂ + N₂ d) None of these 191.A combustible gas is liberated when caustic soda solution is heated with a)S b) NH₄Cl c) I₂ d)Zn

N.B.Navale

Date : 01.04.2025

Time : 02:51:54

Marks : 191

7.S-BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS), ELEMENTS OF GROUP 1 AND 2

						ANS	W	ER K	EY:						
1)	d	2)	а	3)	а	4)	а	165)	а	166)	b	167)	b	168)	С
5)	d	6)	С	7)	b	8)	a	169)	b	170)	b	171)	с	172)	d
9)	а	10)	С	11)	С	12)	a	173)	d	174)	b	175)	d	176)	d
13)	С	14)	b	15)	а	16)	а	177)	d	178)	С	179)	b	180)	d
17)	b	18)	d	19)	а	20)	b	181)	а	182)	d	183)	a	184)	b
21)	d	22)	С	23)	а	24)	d	185)	d	186)	d	187)	b	188)	b
25)	b	26)	С	27)	d	28)	a	189)	d	190)	b	191)	d		
29)	а	30)	а	31)	а	32)	С								
33)	d	34)	а	35)	а	36)	a								
37)	а	38)	d	39)	С	40)	d								
41)	С	42)	С	43)	а	44)	d								
45)	а	46)	С	47)	b	48)	b								
49)	С	50)	а	51)	а	52)	b								
53)	b	54)	С	55)	а	56)	a								
57)	b	58)	С	59)	b	60)	a								
61)	b	62)	a	63)	а	64)	b								
65)	b	66)	d	67)	C	68)	C								
69) ==>	b	70)	b	71)	b	72)	b								
73)	C	74) 72)	a	75)	b	76)	а								
77)	b	78)	b	79 <u>)</u>	a	80)	a								
81)	а	82)	d	83)	C	84)	b								
85)	a	86)	d	87)	d	88)	d L								
89J 02)	C	90J	c	91)	C	92)	D								
93J 07)	C d	94J	C	95)	C b	96J 100)	a d								
97J 101)	u	90J 102)	a	99J 102)	D	100)	u d								
101) 105)	C	102)	d h	103)	a	104J 109)	u								
105)	a h	110)	d	107)	L d	100)	d C								
109)	D C	110)	d	111)	u d	112)	L n								
115)	h	114)	a	119)	u C	120)	a a								
121)	d	122)	a	123)	a	120)	d								
125)	a	126)	d	127)	a	128)	a								
129)	d	130)	d	131)	d	132)	с								
133)	c	134)	d	135)	d	136)	b								
137)	а	138)	d	139)	a	140)	b								
141)	b	142)	b	143)	b	144)	а								
145)	С	146)	d	147)	b	148)	С								
149)	d	150)	b	151)	с	152)	a								
153)	с	154)	а	155)	а	156)	b								
157)	d	158)	d	159)	с	160)	С								
161)	b	162)	С	163)	а	164)	С								
								•							

Page | **11**

TEST ID: 71 CHEMISTRY

N.B.Navale

Date : 01.04.2025 **Time** : 02:51:54

Marks : 191

7.S-BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS), ELEMENTS OF GROUP 1 AND 2

: HINTS AND SOLUTIONS :

Single Correct Answer Type The presence of ammoniated electron is responsible for the blue colour of the solution of 1 (d) sodium in liquid ammonia. $2Na + 2H_2O \rightarrow 2NaOH + H_2 \uparrow$ $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$ 10 (c) Both $Be(OH)_2$ and $Al(OH)_3$ are amphoteric. $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2 \uparrow$ 11 (c) W = Zit = $\frac{40}{96500}$ × 108 × 137 = 0.06 g $\downarrow^{+e^{-}}$ $\downarrow^{-e^{-}}$ 12 (a) Beryllium fluoride (BeF_2) is the most soluble fluoride in water. In case of options (a), (b) and (c), in the last step of heating Na₂CO₃ gives Na-metal which is not 14 **(b)** formed, because it is thermally stable. The low solubility of LIF in water is due to its high Thus, correct sequence of reaction is given in (d). lattice enthalpy and low solubility of Cst is due to smaller hydration enthalpy of its two ions. 2 (a) 15 $CaO + CO_2 \rightarrow CaCO_3$; CO_2 does not react with (a) $(CaSO_4)_2$. H₂O is plaster of Paris. Since, on NaHCO₃. adding water, it sets into a hard mass due to the 3 (a) formation of gypsum, it is used for plastering the Statement I does not illustrate the anomalous broken bones. properties of lithium. $(CaSO_4)_2 \cdot H_2O + 1\frac{1}{2}H_2O \rightarrow 2CaSO_4 \cdot 2H_2O$ Actually, Li is harder than other alkali metals. 4 (a) 16 (a) Ca^{2+} and C_2^{2-} ions. The colour of the paste in the flame is brick red. 5 (d)17 (b) Bones contain $Ca_3(PO_4)_2$. Calcium nitrate gives brick red flame and breaks 6 (c) down on heating to give oxygen and a brown gas $CaSO_4. 2H_2O \xrightarrow{120^\circ} CaSO_4. \frac{1}{2}H_2O \xrightarrow{200^\circ} CaSO_4$ $(NO_2).$ gypsum plaster of Paris anhydrite 18 (d) or dead burnt plaster The anhydrous CaSO₄ is called dead burnt plaster All are fact. It is the ammonia solvated electron because it does not set like plaster of Paris when $(NH_3)_x$. *e* responsible for these properties. moistened with water. 19 (a) 8 (a) Lithium doesn't form amide when reacted with For an ionic compound to be soluble in water its ammonia. It forms tetraamminelithium, $Li(NH_3)_4$. hydration energy should be more than its lattice The equation for the reaction is as follows: energy. $Li + 4NH_3 \rightarrow [Li(NH_3)_4]$ 9 (a)

TEST ID: 71

CHEMISTRY

20 **(b)**

In II-A group, the stability of carbonates increase with the rise in atomic number due to small size of the resulting oxide ion.

 $BeCO_3 < MgCO_3 < CaCO_3 < SrCO_3 < BaCO_3$

21 (d)

On moving from top to bottom

Be(OH)₂ Mg(OH)₂ o Thermal stability increases Ca(OH)₂ o Basic character increases o Solubility in water increases Sr(OH)₂ Ba(OH)₂

22 (c)

Gypsum is $CaSO_4 \cdot 2H_2O$.

23 (a)

Decomposition of $L_2CO_3, L_2CO_3 \xrightarrow{\Delta} Li_2O + CO_2 \begin{vmatrix} 22.4 \ L \\ 22.4 \ L \end{vmatrix} 34$ Na_2CO_3 is thermally stable, i.e, it doesn't give CO_2 gas of heating. Hence, volume of CO₂ formed on 35 heating the mixture at STP is 22.4 L.

24 (d)

 $K + O_2 \rightarrow KO_2$; $2Mg + O_2 \rightarrow 2MgO$; $3Mg + N_2 \rightarrow Mg_3N_2$.

25 **(b)**

> The correct formula of halides of alkaline earth metals is

 $CaCl_2 \cdot 6H_2O, BaCl_2 - 2H_2O, SrCl_2 \cdot 6H_2O$

26 (c)

Due to very large size of sulphate ions, the magnitude of lattice energy of alkaline earth metal sulphates remains almost constant. Thus, their solubility is governed by only hydration energy 43 which decreases from Be^{2+} to Ba^{2+}

27 (d)

When ionic hydndes of s -block elements are subjected to electrolysis, dihydrogen gas is 44 liberated at anode which confirms the existence of hydrogen in the form of hydride ion (H). Following reactions takes place:

 $MH(f) \rightleftharpoons M^+(aq) + H^-(aq)$

At cathode $M'(aq) + e^{-1} \rightarrow M(s)$

At anode $2H^{-}(aq) - 2e^{-} \rightarrow 2H(g)$

 $H + H \rightarrow H_2(g)$

28 (a)

A more economical process but based on same principle was given by Solvay.

32 (c)

The solubility of sulphates of alkaline earth metals decreases regularly on moving down the group because solubility product decreases from $BeSO_4$ to $BaSO_4$. Hence, the order of solubility of their sulphates is

BeSO₄ $> MgSO_4 > CaSO_4$ $> SrSO_4 > BaSO_4$ 2.4×10^{-5} 7.6 K_{sp} : very high 10 $\times 10^{-7}$ 1.5 $\times 10^{-9}$

33 (d)

Hydration energy of smaller cations are higher than those of larger cations, hence Mg²⁺ has maximum hydration energy among these.

(a)

37

38

40

It is reason for the given fact.

(a) BeCl₂ is covalent in nature.

(a) KI reacts with Pb^{2+} , Hg^{2+} and Cu^{2+} to give insoluble iodides of Pb, Hg and Cu.

(d)

Ca – brick red colour

- Sr crimson red
- Ba green. (4)

$$\begin{array}{c} (u) \\ B_{2}O_{1} + 2HC_{1} \longrightarrow B_{2}C_{1} + H_{2}O_{2} \end{array}$$

$$BeO + 2NaOH \rightarrow Na_2BeO_2 + H_2O,$$

42 (c)

> $Be(OH)_2$ is amphoteric as it reacts with both acids and bases.

(a)

 $CaCl_2 \rightarrow Ca^{2+} 2Cl^{-}$ (molten) cathode anode $Ca^{2+} + 2e^- \rightarrow Ca$ Cathode Anode

 $2\mathrm{Cl}^- \rightarrow 2e^- + \mathrm{Cl}_2$

(d) On hydration plaster of Paris, converts into gypsum.

$$CaSO_4 \cdot \frac{1}{2}H_2O + \frac{3}{2}H_2O \rightarrow CaSO_4 \cdot 2H_2O$$

plaster of Paris gypsum

46 (c)

 $Ca(OH)_2$ is also known as milk of lime.

48 **(b)**

BaCrO₄ is yellow solid, insoluble in CH₃COOH.

	Ba ²⁺ forms insoluble BaSO ₄ , Pb ²⁺ forms	63	(a)
	PbCl ₂ and PbSO ₄ both insoluble in cold water.		The correct order of decreasing covalent
50	(a)		character in metal halides is
	MgO is basic; rest all are amphoteric.		
51	(a)		Lil > LiBr > LiCl
-	Blanc fixe is finely divided BaSO		
52	(h)		smaller cation polarises anion to a greater extent.
52	Electronic configuration indicator that the motal		Honce possesses larger covalent nature
	Electronic configuration multicates that the metal		nence, posseses larger covalent nature.
	is univalent (alkali metal). Its oxide will be M_2O .	64	(h)
53	(h)	01	Cationic radius increases down the group and
55	Sr imports crimson rod light to flame		decreases along the period
Ε4	(a)	65	(b)
54	(C) Muse Courie and have based Diana Courie isolated	05	
	Mme curie and her husband Piere Curie isolated		$2Mg + O_2 \rightarrow 2MgO + Light$
	radium from pitch blende.	66	(d)
55	(a)		Mg is present in chlorophyll.
	$Mg(HCO_3)_2 \xrightarrow{\Delta} MgO + H_2O + 2CO_2$	67	(c)
	aqueous solution of (products)		$2NaCl + 2H_2O \xrightarrow{Electrolysis} 2NaOH + Cl_2$
	magnesium bicarbonate		+ Ha
56	(a)		anode cathode
	Sodium hydrogen carbonate (NaHCO ₂) is added	60	
	to cakes and pastries because when it is heated, it	00	C) PoSO is insoluble in NUL and betweeter
	generates hubbles of CO, which make cakes	60	$Baso_4$ is insoluble in NH_3 and not water.
	puffr	69	(b)
	pully.		$CaCO_3 \xrightarrow{a}$, CaO_1 , + CO_2
57	(b)	70	basic oxide Acidic oxide
	Heat Heat	70	(D)
	$MgCO_3 \longrightarrow MgO + CO_2$		Un strong neating, $MgCl_2 \cdot 6H_2O$ is hydrolysed by
	The metal oxide of which is stable, has unstable		its own water of crystallisation.
	carbonate		$MgCl_2 \cdot 6H_2O \xrightarrow{\Delta} MgO + 2HCl + 2H_2O$
58	(c)	71	(b)
	The solubility of hydroxides of alkaline earth		226 Ra $\rightarrow ^{222}$ Rn + 4 He
	metals in water increases on moving down the	72	(h)
	group	/ _	NaHCO, and NaOH both reacts to form $Na_{1}CO_{2}$
59	(b)		Narroo3 and Naorr both reacts to form Na ₂ 003.
	Magnesium sulphate heptahydrate		$NaHCO_3 + NaOH \rightarrow Na_2CO_3 \cdot H_2O$
	$[MgSO_4.7H_2O]$ is called epsom salt.		5 2 5 2
60	(a)	73	(c)
	$Be + 2NaOH \rightarrow Na_2BeO_2 + H_2$		It is a fact.
61	(h)	74	(a)
01	One mole of magnesium nitride on the reaction		The correct order for lattice energy of chloride of
	with an avcass of water gives two moles of		alkali metals
	with an excess of water gives two moles of		
	annionia. M_{-} M_{-} (M_{-}) M_{-} (M_{-}) (M_{-}) (M_{-})		LiCl > NaCl > KCl > RbCl > CsCl
	$Mg_3N_2 + 6H_2U \rightarrow 3Mg(UH)_2 + 2NH_3$		
(2)			Smaller cation polarises anion to a greater extent
62			hence, possess larger covalent nature and thus
	$Be(OH)_2$ has minimum basicity and has		higher lattice energy.
	amphoteric character as it dissolves both in acid	75	
	and in alkali.	15	
	$Be(OH_2) + 2HCl \rightarrow BeCl_2 + 2H_2O$		Litnium imide is an inorganic compound with the
	$Be(OH_2) + 2NaOH$		chemical formula Li_2NH . This white solid can be
	\rightarrow Na ₂ BeO ₂ + 2H ₂ O		formed by a reaction between lithium amide and

lithium hydride.

 $LiH_2 + LiH \rightarrow Li_2NH + H_2 \uparrow$ Lthium imide

The product is light sensitive and can undergo disproportionation to form lithium nitride.

76 (a)

It is a fact.

77 **(b)**

At cathode $H^+ + e^- \rightarrow H, H + H \rightarrow H_2$

At anode $Cl^- \rightarrow Cl + \theta^-, Cl + Cl \rightarrow Cl_2$

78 **(b)**

Brick red colour is given by Ca while \boldsymbol{O}_2 and brown nitrate. gas are given by $\begin{array}{c} 2\text{Ca}(\text{NO}_3) \xrightarrow{\Delta} 2\text{Ca}0 + 0_2 \uparrow + 4\text{NO}_2 \uparrow \\ \text{Calclum nitrate} \end{array}$

79 (a)

On heating, it decomposes with evolution of CO_2 .

 $MgCO_3 \xrightarrow{\Delta} MgO + CO_2$

80 (a)

It is an use of Mg.

81 (a)

Smaller is ion, more is hydration energy.

82 (d)

 $5Mg + Air(N_2 + O_2) \rightarrow Mg_3N_2 + 2MgO.$

83 (c)

Celestine is SrSO₄.

84 **(b)**

The second ionisation enthalpies of alkaline earth metals are smaller than alkali metals. This is due to stable completely filled ns^2 configuration of 94alkali metal cations.

85 (a)

Only nitrates of heavy metals and lithium decompose on heating to produce NO₂.

86 (d)

NaOH is not used in plastic industry. It is used in paper, rayon and soap industry.

87 (đ)

Cal₂ has maximum covalent character due to large size of anion and possesses lowest lattice energy. Thus melting point is lowest.

88 (d)

Plaster of Paris absorb water to form monoclinic gypsum which is a hard substance.

$$CaSO_4 . \frac{1}{2}H_2O \xrightarrow{3/2H_2O} CaSO_4 . 2H_2O$$

monoclinic gypsum

89 (c)

> hydroxide Sodium is generally prepared commercially by the electrolysis of sodium chloride is Castner-Kellner cell.

> When brine solution is electrolysed using a mercury cathode and carbon anode.

91 (c)

The diagonal relationship in Be and Al is due to similar ionic size and charge/radius ratio. Generally, on moving from left to right across a period, the ionic charge increases to maximum and then decreases, while the ionic size. decreases, causing an increase in its polarising power (Fajan's rule). On the other hand, on moving down a group the ionic charge remains the same while ionic size increases.

Therefore, polarising power decreases. On moving diagonally, these two effects partly balance each other and therefore, there is no marked change in their properties.

92 (b)

Anhydrous CaCl₂ is not used to dry alcohol as it forms $CaCl_2 \cdot 4C_2H_5OH$ and also reacts with NH₃.

93 (c)

Carnallite (KCl. MgCl₂. 6H₂0), dolomite $(MgCO_3 . CaCO_3)$ and sea water are the ores of magnesium, calamine $(ZnCO_3)$ is an ore of zinc.

(c)

Carbon dioxide turns only lime water milky. Thus, the compound C must be Ca(OH)₂ and the element A must be Ca. The reactions are as follows:

(D)

$$\begin{array}{l} 3\text{Ca}_{(A)} + \text{N}_{2} \rightarrow \text{Ca}_{3}_{(B)} \text{N}_{2} \\\\ \text{Ca}_{3}_{(B)} \text{N}_{2} + 6\text{H}_{2}\text{O} - 3\text{Ca}_{(OH)}^{(OH)} + 2\text{NH}_{3}_{(D)} \\\\ \text{(b)} \end{array}$$

$$Ca(OH)_{2} + CO_{2} \rightarrow CaCO_{3} + H_{2}O$$
_(C)
_(C)

96 (a)

> On moving down, water solubility of alkaline earth metals decreases. Oxides and hydroxides of alkaline earth metals are basic, except Be, which gives amphoteric.

Hence, metal is Be.

97 **(d)**

Plaster of Paris is a whit powder. It changes into a hard mass called gypsum on mixing with water. There is a slight increase in volume during this process.

 $\begin{aligned} & \text{CaSO}_4 \, . \frac{1}{2}\text{H}_2\text{O} + 1\frac{1}{2}\text{H}_2\text{O} \ \rightarrow \text{CaSO}_4 \, . \, 2\text{H}_2\text{O} + \text{Heat} \\ & \text{Plaster of Paris} \qquad & \text{gypsum} \end{aligned}$

98 (a)

Hydrogen gas is liberated in the reaction of sodium hydroxide with CO_2 .

100 **(d)**

The elements of IInd period show similar properites as the elements of III period which are diagonally placed to them.

B.

A1

C

Si

Ν

Р

III period Na

II period Li,

101 **(c)**

It is a fact.

102 **(a)**

A suspension of $Mg(OH)_2$ in water is used as antacid under the name of milk of magnesia.

Mg

103 (a)

 $Ba(OH)_2 > Sr(LOH)_2 > Ca(OH)_2 > Mg(OH)_2$

decreasing order of solubility

104 **(d)**

Solubility of sulphates decreases down the group, therefore $BaSO_4$ is least soluble sulphate while $BeSO_4$ is highly soluble sulphate. Hence, $BaSO_4$ will be most stable while $BeSO_4$ is least stable in aqueous solution.

105 **(a)**

In the manufacture of NaOH by the electrolysis of NaCl solution, the cathode and anode are separated using a diaphragm because, it prevents the reaction between H_2 and Cl_2 formed.

106 **(b)**

As the electropositive character increases from top to bottom, the stability of the carbonates and hydrogen carbonates increases from top to bottom.

107 **(c)**

Dolomite is $CaCO_3 \cdot MgCO_3$.

108 **(a)**

$$\begin{array}{c} \operatorname{CaCO}_{(X)} \xrightarrow{\Delta} \operatorname{CaO} + \operatorname{CO}_{2} \\ \operatorname{CaO} + \operatorname{H}_{2}O \longrightarrow \operatorname{Ca}(\operatorname{OH})_{2} \\ \operatorname{Ca}(\operatorname{OH})_{2} + \operatorname{CO}_{2} \\ \operatorname{(Excess)} \xrightarrow{\Delta} \operatorname{Ca}(\operatorname{HCO}_{3})_{2} \\ \operatorname{Ca}(\operatorname{HCO}_{3})_{2} \xrightarrow{\Delta} \operatorname{CaCO}_{3} + \operatorname{H}_{2}O + \operatorname{CO}_{2} \end{array}$$

109 **(b)**

CaCO₃ is called Iceland spar.

110 (d)

It is a reason for given fact.

111 (d)

Scarlet red flame-Sr; Chrimson red-Ca; Apple green-Ba

112 **(c)**

Ra is radioactive and thus, decays instantaneously.

113 **(c)**

Hydration enthalpy of Li⁺is highest among all other alkali metal due to its smaller size. Therefore, Li⁺acts as a strong reducing agent.

114 **(d)**

Mg + 2HCl
$$\rightarrow$$
 MgCl₂ + H₂ ; $E_{OP_{Mg}}^{\circ} > E_{OP_{H}}^{\circ}$

115 (d)

Hasenclever plant (old method), Beckmann's plant (new method) are the commercial method to obtain bleaching powder by:

$$2\text{Cl}_{2} + 3\text{Ca}(\text{OH})_{2} \rightarrow \\ \text{Dry slaked} \\ \text{lime} \\ \underline{\text{Ca}(\text{OCl}_{2}) + \text{Ca}\text{Cl}_{2} \cdot \text{Ca}(\text{OH})_{2}\text{H}_{2}\text{O}}_{\text{Bleaching powder}} + \text{H}_{2}\text{O}$$

116 **(a)**

The order of melting point and boiling point of alkali metal halides decreases as fluoride > chloride > bromide > iodide

This trend is due to decrease in negative value of $\Delta_f H^{\ominus}$ of halides with increase in size.

```
117 (b)
```

NaOH + CaO is called soda lime. 3 : 1

118 **(a)**

Plaster of Paris CaSO₄ $\cdot \frac{1}{2}$ H₂O, gypsum CaSO₄ $\cdot 2$ H₂O.

Mg is more powerful reductant than carbon.

120 **(a)**

Mg combines directly with N_2 .

121	(d) Because of its low ionisation energies, elemental Na loses its valence s-electron easily and undergoes oxidation.	135	energy. (d) If the temperature rises to 30°C, Cs will get melt.
122	(a) M.n. order is Mg < Ra < Ba < Sr < Ca < Be	130	$Mg + 2HNO_3 \longrightarrow Mg(NO_3)_2 + H_2 \uparrow$ dil.
123	(a) Lithium ion has small size, it has the highest hydration enthalpy, which compensate its high lonisation energy and therefore, its E° value is most negative. Thus, Li is the most powertul reducing agent in aqueous solution.	137 138	Hence, MgO is not formed in this reaction. (a) Be (Z = 4) has maximum covalency of four while Al (Z = 13) has maximum covalency of 6. (d) Ca(NO ₂) ₂ \rightarrow CaO + 2NO ₂ + $\frac{1}{2}$ O ₂
124	(d) Mg due to lightness and toughness is used in	139	Ca imparts brick red colour to flame.
125	ships. (a) Calcium is manufactured by the electrolysis of a molten mixture of calcium chloride containing some CaF ₂ . CaCl ₂ \rightleftharpoons Ca ²⁺ + 2Cl ⁻ Ca ²⁺ + 2e ⁻ \rightarrow Ca (at cathode)	140 141	(d) $Cl_2 + Ca(OH)_2 \rightarrow CaOCl_2 + H_2O$ Compound 'X' is dry slaked lime. (b) Bicarbonates of alkaline earth metals exist only in solution state. (b)
126	(d) The alkali metals dissolve in liquid ammonia giving deep blue solutions which are conducting in nature.	142	BeSO ₄ is soluble in water. (b) Thomas slag or phosphatic slag is a mixture of calcium phosphate and calcium silicate $[Ca_3(PO_4)_2 . CaSiO_3]$. It is used as manure.
128	(a) Lithium salts impart bright red colour to the flame	144	(a) Follow Fajan's rule.
129	(d) From Be to Ba ionic character increases	145	(c) Ba ⁺ + $e \rightarrow$ Ba
130	(d) CaO (quick lime) Ca(OH) ₂ - (slaked lime) Ca(OH) ₂ + H ₂ O - an aqueous suspension of Ca(OH) ₂ in water, call CaCO ₂ (lime stone)	146 147	Be ⁺ → Be ²⁺ + e (d) BeF ₂ is linear (<i>sp</i> -hybridization), H ₂ O is angular (<i>sp</i> ³ -hybridization). (b) BeCl ₂ exists in polymeric form.
131	(d) Alkaline earth metals combine directly with O_2 to form oxides which when further heated in presence of excess of O_2 form peroxides. Thus,	148 149	 (c) Mme Curie and her husband Piere Curie isolated radium from pitch blende. (d)
132	Ba0 is formed (c) $LiNO_3 \xrightarrow{A} Li_2O + NO_2 \uparrow + O_2 \uparrow$	150 151	Ba possesses lowest ionization potential. (b) $CaC_2 + N_2 \rightarrow CaCN_2 + C.$ (c)
133	(c) Sodium hydroxide, i.e. NaOH is most basic in nature.		For the preparation of sodium carbonate by Solvay process, faw materials used are NaCl, NH_3 and $Ca(OH)_2$ (for CO_2).
134	(d) BaSO ₄ has high lattice energy and low hydration		The process involves the following reactions:

	NH3	$_{3} + H_{2}0 +$	C0 ₂	$\rightarrow \mathrm{NH}_4\mathrm{NG}$) ₃		character res
	CaC	$0_3 \rightarrow CaC$) + (CO ₂		163	(a) It is a fact.
	NaC	$l + NH_4H0$	CO ₃	\rightarrow NaHCO	$_3 + NH_4Cl$	164	(c)
	CaO	$+H_20 \rightarrow$	• Ca	(OH) ₂			of correspond
	2NF	$H_4Cl + Ca($	OH)	$_2 \rightarrow \text{CaCl}_2$	$+ 2NH_3 + 2H_2O$		of nuclear ch from left to ri
	2Na	$HCO_3 \xrightarrow{\Delta} 1$	Na ₂	$CO_3 + H_2O$	+ CO ₂	165	(a)
	Mos	st of the NI	H ₃ c	an be recov	vered in the process.		Group first el that they emi
152	(a) Only beryllium chloride (BeCl ₂) is soluble in ethanol.					100	light (photoe increases on towards caes
153	(c) Aqu wat	eous solut er, <i>i. e.,</i> Ba	tion (OH	of baryta () ₂ .	BaO) is called baryta	100	Lithium bein, CO_3^{2-} ion lead Li_2O and CO_2
154	Met	al oxides a	ire b	oasic; non-r	netal oxides are	167	(b)
157	(d)	IIC.				168	(c)
158	It is (d)	a fact.					The correct fluorides in w
	Ba a	ind Ra on l	burr	ning in air f ve oxides (N	orms peroxides		LiF <naf <k<="" td=""></naf>
159	(inc		ii giv	e oxides (1			The solubili
	Co	lumn		Column			proportional
	A	Li	1	Crimson			More the latt
				red		169	(b)
	В	Na	2	Yellow		170	(b)
			•				Grignard reag
	C	k	3	Violet		171	(c) The basic cha
							hydroxides d
	D	Rb	4	Red		150	increases dov
			•	violet		1/2	(d) Mg allovs are
						173	(d)
160	(c)						At Cathode:
	CaC	$_{2} + 2H_{2}O$	→ ($Ca(OH)_{2} +$	C ₂ H ₂	174	At Anode: (b)
161	(b)	accium nit	rita	(KNO) is a	used in sun newder		Mixture of Mg
	rota	aəərunn 1111	ine	(131103) 15 (useu in gun powuer.	175	cement. It is
162	(c) BeC	l_2 and Rb	Cl ł	nas the lea	st and greatest ionic	1,2	The hydration increase in si

pectively.

h metals have smaller size than those ding alkali metals is due to high value narge, which increase along a period ight.

ements are so highly electropositive t electron, even when exposed to lectric effect) and this character moving down the group from lithium sium

g very small in size, polarises a large ding to the formation of more stable

 \rightarrow Mg(NO₃)₂ + H₂

order of solubility of alkali metal vater is

F<CsF

ity of alkali metal is inversely to the lattice energy.

tice energy, lesser will be solubility.

 $BaSO_3$.

gents are *R*Mg*X*.

aracter of metal oxides and ecreases along the period and wn the gp

lighter.

 $K^+ + e \longrightarrow K \text{ and } Mg^{2+} + 2e \longrightarrow Mg$ $2Cl^- \rightarrow Cl_2 + 2e$

gCl₂ and MgO is called Sorel's $MgCl_2 . 5MgO . xH_2O.$

n energy of cations decrease with ze of cation.

176	(d) Hydrogen carbonate of lithium does not exist in solld state due to high polarisation value of Li^+ ion which causes formation of more stable Li_2O and CO_2 .
177	(d) Anhydrous calcium chloride is used in the laboratory for fast drying of neutral gases
178	(c) Anhydrous CaCl ₂ is used for fast drying of neutral gases.
179	(b) Abundance ratio is $Ca > Mg > Be > Sr \sim Ba > Ra$.
180	(d) BaO ₂ $\xrightarrow{\Delta}$ BaO + $\frac{1}{2}$ O ₂
181	(a) $3Ca(OH)_2 + 2Cl_2$ $\rightarrow Ca(OCl)_2 \cdot CaCl_2 \cdot Ca(OH)_2$
100	\cdot H ₂ O(or CaOCl ₂)
182	(d) The solubility order: $CaF_2 < CaCl_2 < CaBr_2 < CaU$
183	(a) Crude sodium chloride (NaCI) obtained by rystallisation of brine solution contains CaSO4.
	Na_2SO_4 , $CaCl_2$, $MgCl_2$ as impurities. $CaCl_2$ and $MgCl_2$ are deliquescent, i.e. absorb moisture from atmosphere and give wet appearance to the salt. Crude salt is dissolved in water and insoluble mpurities are removed by fitration. Hence, $MgSO_4$ s not present in crude sodium chloride.
184	(b) $Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$ bleaching powder
186	(d) In salt (X) = $Na_2SO_3: H_2O_{50\%}$
	Molar mass of $Na_2SO_3 = 126$
	Molar mass of $H_2 0 = 18$

Hence, 7 molecules of water are attached with Na_2SO_3 .

 $\therefore \quad \text{Formula} = \text{Na}_2\text{SO}_3 - 7\text{H}_2\text{O} \quad 126:18 \times 7 \Rightarrow$ $126:126 \Rightarrow 1:1$

 $Na_2SO_3.7H_2O + H_2SO_4(aq) \rightarrow SO_2(g) +$ $Na_2SO_4(aq) + H_2O(l)$

 $: 252 \text{ g Na}_2 \text{SO}_3.7 \text{H}_2 \text{O} \text{ gives} = 22.4 \text{ LSO}_2$

: $2.52 \text{ g Na}_2 \text{SO}_3$. 7H₂O will give $=\frac{22.4}{252} \times 2.52 =$ 0.224 L

187 (b)

 $BeO + C \rightarrow Be + CO$

188 (b)

Hydration energy of alkaline earth metals sulphates decreases down the group. Mg²⁺ being smaller than the other ions, is readily hydrated. Thus, MgSO₄ has higher hydration energy than lattice energy.

189 (d)

Alkali metal hydroxides are more stronger base than alkaline earth metal hydroxides. Also basic character of hydroxides of alkaline earth metals increase down the gp.

190 (b)

When calcium carbide reacts with nitrogen at 1000°C, calcium cyanamide and carbon is formed.

$$CaC_2 + N_2 \xrightarrow{1000\%} CaCN_2 +$$

calcium cyanamide

С

191 (d)

 $2NaOH + Zn \rightarrow Na_2ZnO_2 + H_2 \uparrow$