N.B.Navale

Date : 28.03.2025 **Time** : 02:01:30 Marks : 135

TEST ID: 44 PHYSICS

SEMICONDUCTORS

1

Single Correct Answer Type

Single Correct Answer Type			behaves as		
1.	Forbidden energy gap	in a semiconductor is		a) non-metal	b)insulator
	a) 1 eV	b)6 eV		c) metal	d) extrinsic
	c) 0 eV	d)9 eV			semiconductor
2.	In a p-n junction diode	1 7)	8.	In reverse bias p-n-jur	nction diode depletion
	a) the current in the	b) the current in the		layer width	
	reverse biased	reverse biased		a) Decreases	b) Increases
	condition is	condition is small		c) Remain same	d) Can't predicted
	generally zero	but the forward	9.	What enables Ge beha	ve as semiconductor
	5	biased current is		even though all electro	ons in the valence band
		independent of the		form covalent bonds?	It is due to the small
		bias voltage		width of	
	c) the forward biased	d) the forward biased		a) valence band	b) conduction band
	current is strongly	current is very small		c) forbidden energy	d)None of these
	dependent on the	in comparison to		gap	,
	applied bias voltage	reverse biased	10.	Reverse bias applied t	o a p-n junction diode
	11 0	current		a) lower the potential	b) decreases the
3.	The forbidden energy	gap in Ge is 0.72 eV.		barrier	majority charge
	Given, $hc = 12400 \text{ eV}$	- A. The maximum			carriers
	wavelength of radiatio	on that will generate		c) raises the potential	d) changes the mass of
	electron-hole pair is	U		barrier	p-n junction diode
	a) 172220 A	b) 172.2 A	11.	The majority charge ca	arriers in p-type and n-
	c) 17222 A	d) 1722 A		type semiconductor a	e respectively
4.	In insulators CB is con	duction band and VB is		a) Electrons and	b) Holes and electrons
	valence band			electrons	,
	a) VB is partially filled	b) CB is partially filled		c) Holes and holes	d)Electrons and holes
	with electrons	with electrons	12.	Serious drawback of th	ne semiconductor device
	c) CB is empty and VB	d)CB is filled with		is that they	
	is filled with	electrons and VB is		a) cannot be used with	b) pollute the
	electrons	empty		high voltage	environment
5.	In case of $p - n$ junction	on diode, the width of		c) are costly	d) do not last for long
	depletion region is			, . ,	time
	a) decreased with	b) increased by reverse	13.	At elevated temperatu	re, few of covalent bonds
	heavy doping	biasing		of Si or Ge are broken	and a vacancy in the
	c) decreased with light	t d)increased by forward		bond ia created. Effect	ive charge of vacancy or
	doping	biasing		hole is	C
6.	With forward biased n	node, the p-n junction		a) positive	b) negative
	diode			c) neutral	d) sometimes positive
	a) is one in which	b) is one in which		-	and sometimes
	width of depletion	potential barrier			negative
	layer increases	increases	14.	The diffusion current	in a $p - n$ junction is
	c) acts as closed switcl	h d)acts as open switch		, from the <i>n</i> -side to	from the <i>p</i> -side to
7.	At absolute zero temp	erature, pure silicon		the <i>p</i> -side	the <i>n</i> -side

15.	from the <i>n</i> -side to the <i>p</i> -side, if thefrom the <i>p</i> -side to the <i>n</i> -side, if thec)junction is forward biased and in the opposite direction, if it is reverse biasedjunction is forward biased and in the opposite direction, if it is reverse biasedIn an intrinsic semiconductor, at an ordinary temperature, the correct relation between the number of holes per unit volume n_{θ} and number of holes per unit volume n_h , isa) $n_{\theta} = n_h$ c) $n_{\theta} < n_h$ d) $n_{\theta} = n_h = 0$ In a <i>p</i> -type semiconductor, germanium is dopped with	22.	The conductivity of a semiconductor increases with increase in temperature, because a) number density of b) relaxation time free current carries increases increases c) both number densityd) number density of of carries and carries increases, relaxation time increase decreases but effect of decrease in relaxation time is much less than increase in number density
	a) gallium b) boron	23.	The current in the following circuit is
	c) aluminium d) All of these		+5V 200Ω +3V
17.	In the forward bias arrangement of a p - n -		
	junction diode, the <i>n</i> -end is connected a) to the positive terminal of the <i>p</i> -end is connected to b) the positive terminal of the battery	24.	a) 10 A b) Zero c) 0.025 A d) 10 ⁻² A Breakdown in a semiconductor diode occurs when
	battery		a) The potential barrierb) Reverse bias exceeds
	direction of current <i>p</i> -end is connected to		becomes zero a certain value
	c) is from <i>n</i> -end to <i>p</i> -d) the negative terminal		c) Forward bias d) Forward current
18	In the arrangement shown below, the current		exceeds a certain exceeds a certain
10.	through diode is	25	The dominant mechanisms for motion of
		23.	charge carriers in forward and reverse biased
			silicon $p - n$ junctions are
	h)100		a) drift in forward bias, b) diffusion in forward
	c) Zero d) 20 mA		diffusion in reverse bias, drift in reverse
19.	There is no hole current in good conductors,		bias bias
	because they		c) diffusion in both d) drift in both forward
	a) have large forbidden b) have overlapping		forward and reverse and reverse bias
	energy gap valence and	26	The region near the junction of an unbiased n-
	conduction bands	20.	n junction diode is known as depletion layer.
	c) are full of electron d) have no valence		The layer is depleted of
20	gas Danu If n-n junction diode is reverse biased then		a) Both positive and b) Only negative ions
20.	a) Width of the b) Potential barrier		negative ions
	depletion layer decreases	07	c) Electrons and holes d) Only positive ions
	decreases	27.	At room temperature, a p-type semiconductor
	c) Width of the d) Electrical conduction		a) Equal number of b) Large number of free
	depletion layer is possible		free electrons and electrons and few
21	increases		holes holes
41 .	a) Barrier potential b) Width of depletion		c) Large number of d) No electrons or holes
	increases layer increases		holes and few
	c) Electric conduction d) Width of depletion		electrons
	is not possible layer decreases	28.	Semiconductor is damaged by the strong

	current due to	and of algorithms		directed from the n-	directed from the p-
	a) lack of free electron b) ex	cess of electron		side to p-side	type side to n-type
	c) excess of proton d) No	one of the above			side
29.	The depletion layer in $p - n$ caused by	junction region is	36.	Resistance of thermisto	or changes with change
	a) drift of electrons b) m	igration of		a) pressure	h) temperature
	ajunit of cicculous bjin	ngration of		a) pressure c) Both (a) and (b)	d) Noithor (a) nor (b)
) diffusion of change d) dr	ipulity ions	27	U Doui (a) anu (b)	ujiveruler (a) lior (b)
	c) diffusion of charge d) dr	The of holes	37.	Hole is	
20	carriers			a) an anti-particle of	b) a vacancy created
30.	Let n_p and n_e be the number	s of holes and		electron	when an electron
	conduction electrons in n-ty	pe extrinsic			leaves a covalent
	semiconductor				bond
	a) $n_p > n_e$ b) n_p	$n = n_e$		c) absence of free	d) an artificially created
	c) $n_p < n_e$ d) n_p	$\neq n_e$		electrons	particle
31.	Let n_p and n_e be the number	of holes and	38.	Choose the FALSE state	ement from the
	conduction electrons respec	ctively in a		following	
	semiconductor. Then,			a) Generally, in	b) The resistivity of a
	a) $n_p > ne$ in an b) n_p	= ne in an		conductors the	semiconductor
	intrinsic ex	trinsic		valence and	increases with
	semiconductor, $l < l_p$ se	miconductor, l > l _p		conducting bands	increase in
	+ l _e +	le		overlap	temperature
	c) $n_p = ne in an$ d) n_p	> ne in an		c) The conductivity of a	ad)Substances with
	intrinsic in	trinsic		semiconductor	energy gap of the
	semiconductor, $l = l_p$ se	miconductor, l = 0		increase with	order of 10 eV are
	$+ l_e$ (H	Iere, l _p = current		increase in	insulators
	dı	ie to holes		temperature	
	m	ovement, l _e =	39.	In a n-type semicondu	ctor, which of the
	cu	irrent due to		following statements is	s true?
	el	ectrons movement,		a) Electrons are	b) Electrons are
	1 =	= total current)		majority carriers	minority carriers and
32.	GaAs is			and trivalent atoms	pentavalent atoms
	a) an elemental b) al	lov semiconductor		are dopants	are dopants
	semiconductor			c) Holes are minority	d)Holes are maiority
	c) bad conductor d)m	etallic		carriers and	carriers and trivalent
	se	miconductor		pentavalent atoms	atoms are dopants
33	The valence band and condu	iction band of a		are dopants	
001	solid overlap at low temper	ature, the solid	40.	The depletion layer in	a <i>n</i> -n junction diode is
	may be		101	10^{-6} m wide and its kr	nee notential is 0 5 V
	a) a metal b) a	semiconductor		then the inner electric	field in the depletion
	c) an insulator d) No	one of these		region is	
34	In reverse bias $n - n$ -junction	n diode depletion		a) 5 $\times 10^{6} \text{Vm}^{-1}$	h) 5 x 10^{-7} Vm ⁻¹
011	laver width	il) aloue depiction		c) $5 \times 10^{5} \text{Vm}^{-1}$	d) $5 \times 10^{-1} \text{Vm}^{-1}$
	a) decreases b) in	creases	41	The drift current in $2n$	-n junction is
	c) remain same d) (a	n't predicted	т1.	from the <i>n</i> side to	from the n side to
32	If a n-n junction diode is not	connected to any		a) the n-side	b) the n-side
55.	circuit then	connected to any		from the n side to	from the n side to
	a) the notential is the h) th	a n-type side has a		the maide if the	the maide if the
	aj ule potential is the DJth	abor notontial than		uie <i>p</i> -side, if the	d) ium etion in former
	same ever ywnere ni	gner potential than		c) junction is forward	a) Junction is forward
		e n-type side		blased and in the	blased and in the
	c) there is an electric d) th	ere is an electric		opposite direction, i	opposite direction, if
	neid at the junction fie	eiu at the junction			

it is reverse biased it is reverse biased

42. In good conductors the gap between the valence band and the conduction band isa) Large but notb) Infiniteinfinite

c) Zero

+2 V N

d)Small but not zero

.3 V

-3V N

43. The forward biased diode connection is

.) V

a) -	.2,	-/}-	·/////////////////////////////////////	– b)	51	-/}-	-//////	<u> </u>
c) -	2 V	-)		/ d)	-2 V	-)		+2 V

- 44. Band gap of silicon is E_g (Si), of germanium is E_g (Ge) and of carbon is E_g (C). The correct order of band gap is
 - a) E_{g} (Si) $< E_{g}$ (Ge) < b) E_{g} (Si) $> E_{g}$ (Ge) $< E_{g}$ E_{g} (C) (C) c) E_{g} (Si) $< E_{g}$ (Ge) < d) E_{g} (Si) $> E_{g}$ (Ge) $> E_{g}$ E_{g} (C) (C)
- 45. Pure silicon at 300 K has equal electron (n_e) and hole (n_h) concentration of 1.5×10^{16} m⁻³. Doping by indium increases n_h to 4.5×10^{22} m⁻³. The n_e in the doped silicon is

a)9× 10 ³	0J5×10 ⁹
c) 2.25× 10 ¹¹	d) 3× 1019

46. The valency of the impurity atom that is to be added to germanium crystal, so as to make it a n-type semiconductor, is

a) 6	b)5
c) 4	d)3

- 47. Electrical conductivity of intrinsic and p-type semiconductor increases with increase in a) density
 b) volume
 - c) Both (a) and (b) d) temperature
- 48. The width of depletion layer of a p-n junction diode, when it is (i) forward biased and (ii) reverse biased respectively
 - a) Decrease and b) Decreases and increases c) Increases and increases and increases and decreases decreases
- 49. When n- type or p-type impurities are added to copper, then
 - a) conductivity b) conductivity does increases not increase c) conductivity d) None of the above becomes zero
- 50. If a small amount of antimony is added to germanium crystal,
 - a) the antimony b) there will be more becomes an acceptor free electrons than

	atom	holes in the
		semiconductor
	c) its resistance is	d) it becomes a p-type
	increased	semiconductor
51.	In semiconductors, at r	oom temperature the
	a) valence band is	b) valence band is
	partially empty and	completely filled and
	the conduction band	the conduction
	is partially filled	
	c) valence band is	d) conduction band is
	completely filled	completely empty
52.	Potential barrier develo	oped in a junction diode
	opposes	
	a) minority carrier in	b) majority carrier only
	both regions only	
	c) electrons in <i>n</i> -region	d)holes in <i>p</i> -region
53.	An n-type semiconduct	or is
	a) negatively charged	b) positively charged
	c) neutral	d)negatively or
		positively charged
		depending upon the
		amount of impurity
54.	In a pure silicon ($n_i = 2$	10 ¹⁶ per m ³) crystal at
	300 K, 10 ²¹ atoms of pl	nosphorus are added
	per cubic metre. The ne	ew hole concentration in
	silicon crystal is	
	a) 10 ⁵ per m ³	b) 10 ²¹ per m ³
	c) 10 ¹⁹ per m ³	d) 10 ¹¹ per m ³
55.	An integrated circuit is	combination of
	thousands of	
	a) diodes	b)transistors
	c) Both (a) and (b)	d)Neither (a) nor (b)
56.	When the conductivity	of a semiconductor is
	only due to breaking of	covalent bond, the
	semiconductor is called	1
	a) intrinsic	b) extrinsic
	c) p-type	d)n-type
57.	A p-n junction has depl	etion region of
	thickness of the order of	of
	a) 1 cm	b)1 mm
	c) 10 ⁻⁶ m	d) 10 ⁻¹² cm
58.	In its crystalline structu	are, every Si or Ge atoms
	are attached to other at	toms by
	a) coordinate bond	b) electrovalent bond
	c) covalent bond	d)hydrogen bond
59.	In energy band diagram	n of insulators, a band
	gap and the conduction	band is respectively
	a) Very low, empty	b) Very low, partially
		filled

c) Very high, empty d) Very high,

completely filled

b) Valance band and

- 60. Choose the correct statement. In conductors
 - a) Valance band and conduction band overlap each other
 - c) Valance band and conduction band are separated by a small energy gap
- energy gap d) A very small number of electrons are available for

conduction band are

separated by large

electrical conduction

61. Which one of the following graph represents forward bias characteristic of a diode?

- 62. In case of p-n junction diode, the width of depletion region is
 - a) Increased by reverse b) Increased by forward biasing biasing

b)Q

d)S

- c) Decreased with light d) Decreased with doping heavy doping
- 63. In the middle of the depletion layer of reverse biased p-n junction, the
 - a) electric field is zero b) potential is infinite
 - c) electric field is d) potential is zero maximum
- 64. In an unbiased p n junction, holes diffuse from the *p*-region to *n*-region because
 - free electrons in the b) they move across the a) *n*-region attract junction by the them potential difference hole concentration d)All of the above
 - in *p*-region is more
 - c) as compared to nregion
- 65. Diffusion current in a p n junction is greater than the drift current in magnitude,
 - a) if the junction is b) if the junction is forward biased reverse biased
 - c) if the junction is d) None of the above unbiased
- 66. In case of insulators
 - a) There is no gap b) Conduction band and between conduction valence band overlap band and valence each other band
 - c) Conduction band is d) Conduction band is

partially filled and empty valence band is partially empty

67. In an ideal junction diode, the current flowing through PQ is

upon the percentage of doping 74. Which one of the following statements is false?

decrease depending

a) Pure Si doped with b) Majority carriers in a

	trivalent impurities gives a p-type	n-type semiconductor are		a) Increases and decreases	b) Decreases and decreases
	semiconductor.	holes.		c) Increases and	d) Decreases and
	c) Minority carriers in	d)The resistance of		increases	increases
	a p-type	intrinsic	81.	In the case of insulate	ors, a band gap and
	semiconductor are	semiconductor		conduction band is re	espectively
	electrons.	decreases with		a) Very high empty	b) Very low, partially
		increase of			filled
		temperature.		c) Very high,	d) Very low, empty
75.	Choose the correct sta	tement, In case of		completely filled	
	insulators,		82.	In a semiconductor d	liode, the barrier potential
	a) Conduction band	b) Conduction band is		offers opposition to a	only
	and valence band	empty		a) majority carrier in	b) minority carrier in
	overlap each other			both regions	both regions
	c) Conduction band is	d)There is no gap		c) free electrons in th	ne d)holes in the p-region
	partially filled and	between conduction		n-region	
	valence band is	and valence band	83.	Electrical conductivit	ty of insulators is
	partially empty.			a) Sometimes small	b) Extremely small
76.	Silicon and copper are	cooled from 300 K to		and sometimes lar	ge
	100 K, the specific res	istance (resistivity)		c) Exactly zero	d) Extremely large
	a) Increases in both	b) Decrease in both	84.	If Np and Ne be the n	umbers of holes and
	copper and silicon	copper and silicon		conduction electrons	in an extrinsic
	c) Decreases in copper	r d)Increases in copper		semiconductor, then	
	and increases in	but decreases in		a) $N_p > N_e$	b) $N_p = N_e$
	silicon	silicon		c) $N_p < N_e$	d) $N_p > N_e$ or $N_p < N_e$
77.	The difference in the v	variation of resistance			depending on the
	with temperature in a	metal and a			nature of impurity
	semiconductor arises	essentially due to the	85.	If p-n junction diode	is reversed biased then
	difference in the			a) Width of depletion	b) Width of depletion
	a) crystal structure	b)variation of the		layer decreases	layer increases
		number of charge		c) Electrical conducti	iond)Potential barrier
		carriers with	0.6	is not possible at a	ll decreases
		temperature	86.	The contribution in t	he total current flowing
	c) type of bonding	d)variation of		through a semicondu	ictor due to electrons and
		scattering		holes are $\frac{3}{4}$ and $\frac{1}{4}$, res	pectively. If the drift
		mechanism with		velocity of electrons	is $\frac{5}{2}$ times that of holes at
70		temperature		this temperature the	2 on the ratio of
/0.	At room temperature,	a p-type semiconductor		concentration of elec	trons and hole is
	a) large number of	h) large number of free		a) 6 : 5	b)5:6
	holes and few	electrons and few		c) 3 : 2	d)2:3
	electrons	holes	87.	A donor impurity res	sults in
	c) equal number of fre	ed) no electrons or holes		a) Production of p-ty	pe b) Holes as majority
	electrons and holes			semiconductor	carries and electrons
79.	The process of adding	impurities to the pure			as minority carriers
	semiconductor is calle	ed		c) Conduction band	d) Production of n-type
	a) drouping	b) drooping		just above the fille	d semiconductor
	c) doping	d)None of the above		valence band	
80.	When the temperature	e of a semiconductor is	88.	Identify the WRONG	statement from the
	increased, its resistant	ce and electric		following.	
	conductivity respectiv	vely		In an intrinsic semico	onductor

- a) The number of free b) There are no free electrons increases electrons at absolute with temperature zero temperature
- c) The number of free d) There are no free electrons is less than that in a conductor

electrons at any temperature except absolute zero

- 89. In a p-type semiconductor,
 - a) Electrons are b) Holes are majority minority carriers carriers and trivalent and pentavalent atoms are dopants atoms are dopants
 - c) Electrons are d) Holes are minority majority carriers carriers and trivalent and pentavalent atoms are dopants atoms are dopants
- 90. In a *n*-type semiconductor, which of the following statement is true?
 - a) Electrons are b) Electrons are minority carriers and majority carriers and trivalent atoms pentavalent atoms are dopants. are dopants.
 - c) Holes are minority d) Holes are majority carriers and carriers and trivalent pentavalent atoms atoms are dopants. are dopants.
- 91. When p-n junction diode is reverse biased, then the width of the barrier potential will
 - a) Decrease and it will b) Remain constant and offer zero resistance it will not offer resistance
 - c) Increase and it will d) Decrease and it will offer more offer more resistance resistance
- 92. Number of electrons in the valence shell of a intrinsic semiconductor is
 - a) 1 b)2 c) 3 d)4
- 93. When a small amount of impurity atoms are added to a semiconductor, then generally its resistivity
 - a) may increase or b) increases decrease depending upon the percentage of doping

- 94. Which one of the following statements is TRUE for n-type semiconductor?
 - a) Electrons are b) Holes are majority minority carriers carriers and trivalent and pentavalent atoms are dopant

atoms are dopants

- d) Holes are minority c) Electrons are majority carriers carriers and and trivalent atoms pentavalent atoms are dopant are dopant
- 95. Electrical conductivity of insulators is
 - b) Exactly zero a) Sometimes small and sometimes large
 - c) Extremely large d) Extremely small
- 96. What are the values of the currents flowing in each of the following diode circuits X and Y respectively? (Assume that the diodes are ideal)

semiconductor

c) Insulator	d)superconductor			
101.In a semiconductor, the	e number of holes and			
number of free electrons are represented as				
$n_{\rm h}$ and $n_{\rm e}$ respectively. Which one of the				
following statements is	following statements is TRUE for the			
semiconductor?				
In an intrinsic	In an extrinsic			
a) semiconductor, n _e =	$=$ b) semiconductor. $n_{\rm b} =$			
n	n.			
In an intrinsic	In an intrinsic			
c) semiconductor, $n_{\rm b} >$	d) semiconductor. n. >			
n	n _h			
102. At absolute zero tempe	erature, nure silicon			
hehaves as	facare, pare smeen			
a) Superconductor	h)Semiconductor			
c) Insulator	d)Conductor			
103 Basic building blocks o	f all electronic circuits			
aro	an electronic circuits			
a) devices in which	h) devices in which			
there is a flow of	there is no flow of			
alactrons	cherens			
c) devices in which	d) dovices in which			
there is a controlled	there is an			
flow of clostrong	uncentrelled flow of			
now of electrons				
	electrons			
101 M/hon towword biog is a	unplied to a n n junction			
104. When forward bias is a	applied to a p-n junction			
104. When forward bias is a then what happens to the width 'W' of the	applied to a p-n junction the potential barrier ' V_B '			
104. When forward bias is a then what happens to t and the width 'W' of th	applied to a p-n junction the potential barrier ' V_B ' e depletion region?			
104. When forward bias is a then what happens to the and the width 'W' of the V_B increases, W	applied to a p-n junction the potential barrier ' V_B ' e depletion region? V_B decreases, W b)			
104. When forward bias is a then what happens to the and the width 'W' of the V_B increases, W decreases	applied to a p-n junction the potential barrier ' V_B ' e depletion region? V_B decreases, W increases			
104. When forward bias is a then what happens to t and the width 'W' of th a) V_B increases, W decreases c) V_B increases, W c) increases	applied to a p-n junction the potential barrier ' V_B ' e depletion region? V_B decreases, W increases V_B decreases, W d) documents			
104. When forward bias is a then what happens to t and the width 'W' of th a) V_B increases, W decreases c) V_B increases, W increases	applied to a p-n junction the potential barrier ' V_B ' e depletion region? V _B decreases, W b) increases d) V _B decreases, W decreases			
104. When forward bias is a then what happens to t and the width 'W' of th a) V _B increases, W decreases c) V _B increases, W increases 105. In semiconductor, the o	applied to a p-n junction the potential barrier ' V_B ' e depletion region? V _B decreases, W b) increases d) V _B decreases, W d) decreases concentrations of			
104. When forward bias is a then what happens to t and the width 'W' of th a) V _B increases, W decreases c) V _B increases, W increases 105. In semiconductor, the electrons and hole are	applied to a p-n junction the potential barrier ' V_B ' e depletion region? V _B decreases, W b) increases d) V _B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18}			
104. When forward bias is a then what happens to t and the width 'W' of th a) V _B increases, W decreases c) V _B increases, W increases 105. In semiconductor, the electrons and hole are m ⁻³ , respectively. IF the	applied to a p-n junction the potential barrier 'V _B ' e depletion region? V _B decreases, W b) $_{increases}^{V_B}$ decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons			
104. When forward bias is a then what happens to t and the width 'W' of th a) V _B increases, W decreases () V _B increases, W c) increases 105. In semiconductor, the electrons and hole are m ⁻³ , respectively. IF the and holes are 2.3 m ² V ⁻	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons v^1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹			
104. When forward bias is a then what happens to t and the width 'W' of th a) V _B increases, W decreases c) V _B increases, W increases 105. In semiconductor, the electrons and hole are m ⁻³ , respectively. IF the and holes are 2.3 m ² V respectively, then semi	applied to a p-n junction the potential barrier 'V _B ' e depletion region? V _B decreases, W b) $_{increases}^{V_B}$ decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is			
 104. When forward bias is a then what happens to the and the width 'W' of the a) V_B increases, W a) V_B increases, W c) V_B increases, W c) N_B increases, W c) In semiconductor, the electrons and hole are m⁻³, respectively. IF the and holes are 2.3 m² V² respectively, then seminanty periods and its and seminanty periods and the seminanty of the seminanty periods and the semin	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons ¹ s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its			
104. When forward bias is a then what happens to the and the width 'W' of the a) V_B increases, W decreases V_B increases V_B increases 105. In semiconductor, the electrons and hole are m ⁻³ , respectively. IF the and holes are 2.3 m ² V-respectively, then seminant the transmission of transmis	applied to a p-n junction the potential barrier 'V _B ' e depletion region? V _B decreases, W b) $_{increases}^{V_B}$ decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω			
 104. When forward bias is a then what happens to the and the width 'W' of the and the width 'W' of the algorithm of the Wight of the Wight	applied to a p-n junction the potential barrier ' V_B ' e depletion region? V _B decreases, W b) increases V _B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons ¹ s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its - resistivity is 0.034 Ω -m			
 104. When forward bias is a then what happens to the and the width 'W' of the and bias and the are and bias and the are and hole are and hole are and holes are 2.3 m² V respectively, then seminary and the and the and the and the are and holes are 2.3 m² V respectively, then seminary and the are are are are are are are are are ar	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its - resistivity is 0.034 Ω -m d) p-type and its			
 104. When forward bias is a then what happens to the and the width 'W' of the and the width 'W' of the algorithm of the Wight of the Wight	applied to a p-n junction the potential barrier 'V _B ' e depletion region? V _B decreases, W b) increases V _B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m			
 104. When forward bias is a then what happens to the and the width 'W' of the and the width 'W' of the Bian and the width 'W' of the and the width 'W' of the Bian and the are and bias and the are and holes are 2.3 m² V and the are and holes are 2.3 m² V are spectively, then seminary and the and the are are and the are are and the are are and the are and holes are 2.3 m² V are spectively, then seminary and the are are are are are are are are are ar	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m			
 104. When forward bias is a then what happens to the and the width 'W' of the W and the width 'W' of the W and the width 'W' of the and the width 'W' of the W and the width 'W' of the electrons and the are m⁻³, respectively. If the and holes are 2.3 m² V respectively, then seminary and the seminary of the test of t	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m			
 104. When forward bias is a then what happens to the and the width 'W' of the and the width 'W' of the and the width 'W' of the and bias is a present the and hole are and hole are and hole are and holes are 2.3 m² V respectively. IF the and holes are 2.3 m² V respectively, then seminary and its a resistivity is 0.34 Ω - m 106. The majority charge can be a semiconductor are and holes are a semiconductor are a semiconductor are and holes are a semiconductor are and holes are a semiconductor a semiconductor a semiconductor a	applied to a p-n junction the potential barrier 'V _B ' e depletion region? V _B decreases, W b) increases V _B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m			
 104. When forward bias is a then what happens to the and the width 'W' of the W of	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m			
 104. When forward bias is a then what happens to the and the width 'W' of the and the width 'W' of the algorithm of the Web increases Web increases Web increases 105. In semiconductor, the electrons and hole are m-3, respectively. IF the and holes are 2.3 m² Veb respectively, then seminary and its a) resistivity is 0.34 Ω - m 106. The majority charge can semiconductor are a) electrons c) holes 	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) V_B decreases, W d) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m			
 104. When forward bias is a then what happens to the and the width 'W' of the W begin and the width 'W' of the W begin and the width 'W' of the and hole are W begin and the width 'W' of the electrons and hole are m -3, respectively. IF the and holes are 2.3 m² V respectively, then seminary and the semiconductor are and the electrons and the semiconductor are and the electrons and the semiconductor are and the semiconductor are and the electrons and the semiconductor are and the semiconductor are	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) V_B decreases, W d) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its - resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m			
 104. When forward bias is a then what happens to the and the width 'W' of the W begin and the width 'W' of the W begin and the width 'W' of the and hore as the telectrons and hole are m⁻³, respectively. IF the and holes are 2.3 m² V respectively, then seminary and the semiconductor are an electrons and the semiconductor are an electrons and the semiconductor are an electrons and the semiconductor will be a semiconductor will be semicond	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons 1 s ⁻¹ and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m arriers in p-type b) protons d) neutrons current in a <i>p</i> -type			
 104. When forward bias is a then what happens to the and the width 'W' of the W beam of th	applied to a p-n junction the potential barrier 'V _B ' e depletion region? b) V_B decreases, W d) V_B decreases, W d) V_B decreases, W d) decreases concentrations of 8×10^{18} m ⁻³ and 5×10^{18} e mobilities of electrons a s-1 and 0.01 m ² V ⁻¹ s ⁻¹ iconductor is b) p-type and its resistivity is 0.034 Ω -m d) p-type and its resistivity is 3.4 Ω -m arriers in p-type b) protons d) neutrons current in a <i>p</i> -type b) protons			

108. Two identical ideal diodes are connected to an ammeter and a d. c. source (1 volt) as shown. In which one of the following circuits, ammeter will not show any deflection?

voltage increases current increases sharply sharply c) current and voltage d) current and voltage c) The valence band is d) The conduction band increase decrease completely filled and is completely empty 114.A piece of copper and the other of germanium the conduction band are cooled from the room temperature to 80 K, is partially empty then which of the following would be a correct 120. In an unbiased p-n junction, statement? a) potential at p is a) Resistance of each b) Resistance of each more than that at n increases. decreases. c) potential at p is c) Resistance of copper d) Resistance of copper equal to that at n increases while that decreases while that of germanium of germanium 121. An n-type and p-type silicon can be obtained decreases. increases. by doping pure silicon with 115. The electrical conductivity of p-type a) arsenic and semiconductor is determined by the number of phosphorous a) Electrons in the b)Holes respectively valence band c) phosphorous and c) Impurity atoms d)Free electrons in the indium respectively alone conduction band 122.In an insulator, the forbidden energy gap 116. Choose the correct statement. In conductors between the valence band and conduction a) Valence band and b) Valence band and band is of the order of conduction band conduction band are a) 1 MeV overlap each other separated by a large c) 1 E V energy gasp 123. The reverse biasing in a p - n junction diode c) Very small number d) Valence band and a) decreases the of electrons are conduction band are potential barrier available for separated by small c) increases the electrical conduction energy gap number of minority 117.Assuming that the junction diode is ideal, the charge carriers current in the arrangement shown in $R = 100\Omega + 1 V$ +3 V of current carriers would be b)10 mA a) 20 mA c) 40 mA d)30 mA negatively charged 118. The given circuit has two ideal depending upon the diodes D_1 and D_2 connected as shown in the type of impurity that figure. The current flowing through the has been added resistance R1 will be 20

a) The valence band is	b) The valence band is
completely filled	partially empty and

charge carriers 124. Intrinsic semiconductor is electrically neutral. Extrinsic semiconductor having large number a) positively charged b) negatively charged c) positively charged ord) electrically neutral 125. In a semiconducting material, the mobilities of electrons and holes are μ_e and μ_h , respectively. Which of the following is true? b) $\mu_e < \mu_h$ d) $\mu_e < 0, \mu_h > 0$ 126. In the case of forward biasing of a p-n junction diode, which one of the following figures correctly depicts the direction of conventional current (indicated by an arrow mark)? Page 9

a) $\mu_e > \mu_h$

c) $\mu_e = \mu_h$

the conduction band is partially filled

b) potential at p is less

positive and that at n

than that at n

d) potential at p is

is negative

b) indium and

aluminum

respectively

respectively

b) 0.1 MeV

b) increases the

d)increases the

potential barrier

number of majority

d)5 eV

d) aluminum and boron

127.In a good conductor, the energy gap between		
the conduction b	and and the valence band is	
a) infinite	b) wide	
c) narrow	d)zero	

- 128. The probability of electrons to be found in the conduction band of an intrinsic semiconductor at a finite temperature
 - a) decreases b) increases exponentially with exponentially with increasing band gap increasing band gap
 - c) decreases with d) is independent of the temperature and the increasing temperature band gap
- 129. In p n junction, avalanche current flows in circuit when biasing is

a) forward	b) reverse
c) zero	d) excess

130.In a pure silicon, number of electrons and holes per unit volume are 1.6×10^{16} m⁻³. If silicon is doped with Boron in a way that on doping hole density increases to 4×10^{22} m⁻³. Then electron density in doped semiconductor will be

a) $6.4 \times 10^{-9} \text{ m}^{-3}$

b) $6.4 \times 10^9 \text{ m}^{-3}$ d) $6.4 \times 10^{10} \text{ m}^{-3}$

c) $6.4 \times 10^{-10} \text{ m}^{-3}$ 131.In a forward bias arrangement of a p-n

junction diode, b) p-region is

a) The p-region is

- connected to connected to the negative terminal of positive terminal of the battery battery c) n-region is d) Direction of connected to the conventional current positive terminal of is from n-region topregion in the diode battery 132. Pure silicon crystal at 300 K has equal electron (n_e) and hole (n_h) concentration of 1.5 \times 10^{16} m^{-3} . Doping by indium increases n_h to 4.5×10^{22} m⁻³. The ne in the doped silicon is a) 2.25×10^{11} b) 9×10^{6} c) 5×10^{9} d) 3×10^{12} 133. In germanium crystal, the forbidden energy gap in joule is b) 1.6× 10⁻¹⁹ a) zero c) 1.1× 10⁻¹⁹ d) 1.76× 10⁻¹⁹ 134. The energy band gap of Si is a) 0.70 eV b) 1.1 eV c) between 0.70 eV to d) 5 eV 1.1 eV 135.Eg for silicon is 1.12 eV and that for germanium is 0.72 eV. Therefore, it can be concluded that a) more number of b) less number of electron-hole pairs electron-hole pairs will be generated in will be generated in silicon than in silicon than in germanium at room
 - temperature c) equal number of electron-hole pairs will be generated in both at lower temperatures
- germanium at room temperature d) equal number of
 - electron-hole pairs will be generated in both at higher temperatures

N.B.Navale

Date: 28.03.2025Time: 02:01:30Marks: 135

TEST ID: 44 PHYSICS

SEMICONDUCTORS

						: ANS	W
1)	а	2)	С	3)	С	4)	С
5)	b	6)	С	7)	b	8)	b
9)	С	10)	С	11)	b	12)	а
13)	а	14)	а	15)	а	16)	d
17)	b	18)	С	19)	b	20)	С
21)	d	22)	d	23)	d	24)	b
25)	b	26)	С	27)	с	28)	d
29)	С	30)	С	31)	с	32)	b
33)	а	34)	b	35)	с	36)	b
37)	b	38)	b	39)	с	40)	С
41)	а	42)	С	43)	а	44)	b
45)	b	46)	b	47)	d	48)	b
49)	b	50)	b	51)	а	52)	b
53)	С	54)	d	55)	С	56)	а
57)	С	58)	С	59)	с	60)	а
61)	d	62)	а	63)	а	64)	С
65)	а	66)	d	67)	С	68)	d
69)	С	70)	С	71)	a	72)	d
73)	b	74)	b	75)	b	76)	С
77)	b	78)	а	79)	С	80)	d
81)	а	82)	а	83)	b	84)	d
85)	b	86)	а	87)	d	88)	d
89)	b	90)	С	91)	с	92)	d
93)	С	94)	d	95)	d	96)	С
97)	b	98)	а	99)	b	100)	С
101)	а	102)	С	103)	с	104)	d
105)	a	106)	с	107)	d	108)	b
109)	b	110)	b	111)	b	112)	а
113)	b	114)	d	115)	b	116)	а
117)	а	118)	b	119)	b	120)	b
, 121)	с	122)	d	, 123)	b	124)	d
125)	а	, 126)	d	, 127)	d	, 128)	а
129)	b	130)	b	, 131)	b	132)	С
133)	с	134)	b	135)	b	-)	-

N.B.Navale

Date : 28.03.2025 Time : 02:01:30 Marks : 135 TEST ID: 44 PHYSICS

SEMICONDUCTORS

: HINTS AND SOLUTIONS :

Single Correct Answer Type

1 **(a)**

For a semiconductor, $0 < E_g \leq 3eV$ Generally, forbidden energy gap in semiconductor is near about 1eV.

2 **(c)**

The forward voltage overcomes the barrier voltage. Due to which, the forward current is high but depends upon the forward voltage applied. The reverse voltage supports the barrier voltage due to which the reverse current is low.

3 **(c)**

Energy gap, $E_g = \frac{hc}{\lambda}$ and $\lambda = \frac{hc}{E_g} = \frac{12400}{0.72} \approx 17222$ Å

4 **(c)**

In insulators, conduction band is empty and valence band is filled with electrons.

5 **(b)**

In case of p - n junction diode, when it is reverse biased, the reverse voltage supports the barrier potential and hence the width of the depletion layer increases.

In forward biasing, the width decreases as the forward voltage opposes the potential barrier. The width of the depletion region increases, if the diode is further doped heavily as the movement of charge carrier decreases.

Also, when the p - n junction is light they doped, the width of depletion region increases, due to increase in the potential barrier.

6 **(c)**

In the forward biased mode, the p - n junction diode acts as closed switch.

7 **(b)**

The pure silicon has negative temperature coefficient of resistivity. At absolute zero temperature, its resistance becomes infinite and acts like an insullator.

8 **(b)**

In reverse bias p-n junction diode depletion layer width increases

9 **(c)**

Forbidden energy gap for Ge is very small as 0.72eV. Hence, at room temperature, some covalent bonding is broken in Ge crystal. Hence, its conductivity lies in the conductivity range of semiconductor.

10 **(c)**

Reverse bias applied to a p - n junction diode raises the potential barrier because p-type material connected to the negative terminal and pushes the holes away from the junction. Similarly, n-type material connected to positive terminal and pushes the electrons away from junction. Therefore, the depletion region widens.

11 **(b)**

The majority charge carriers in p-type and n-type semiconductor are respectively holes and electrons

12 **(a)**

Semiconductor devices are operated at low power. At high voltage, these devices are burnt.

13 **(a)**

In semiconductor, as the temperature increases, more thermal energy becomes available to electrons and some of these electrons may their bonds (becoming free electrons contributing to conduction).

Thus, the thermal energy effectively ionises only a few atoms in the crystalline lattice and creates a vacancy in the bond called holes. These holes behave as positive charge carriers.

14 **(a)**

The diffusion current in a p - n junction diode

flows *p*-side to *n*-side.

15 **(a)**

In intrinsic semiconductor at ordinary temperature, number of free electrons per unit volume (n_{θ}) = number of holes per unit volume (n_h) .

16 **(d)**

In a p-type semiconductor the germanium is dopped with trivalent atoms like aluminium, boron and gallium.

17 **(b)**

In the forward bias arrangement of a p - n junction diode, the p-end is connected to the positive terminal of the battery.

18 **(c)**

Since the potential at the anode (1 V) is less than the potential at the cathode (2V), the diode is reverse biased and hence will not conduct and the current will be zero.

19 **(b)**

In good conductors, which are metals there is no gap between valence band and conduction band. Hence, no holes exist.

20 **(c)**

Theory question

22 (d)

The conductivity of a semiconductor increases with increase in temperature, because the number density of current carriers increases, relaxation time decreases but effect of decrease in relaxation is much less than increase in number density.

23 **(d)**

The diode is forward biased.

Potential difference= 5 - 3 = 2 V

$$I = \frac{V}{R} = \frac{2}{200} = 10^{-2} A$$

25 **(b)**

In forward biasing, the diffusion current increases and drift current remains constant, so net current is due to diffusion. In reverse biasing diffusion is not possible, so net current (very small) is due to the drift.

26 **(c)**

Theoretical question

27 **(c)**

At room temperature, a p-type semiconductor has large number of holes and few electrons.

28 **(d)**

Breakdown of semiconductor device occurs due to the flow of large current.

29 **(c)**

Depletion layer in p - n junction region is caused by diffusion of charge carriers.

30 **(c)**

In *n*-type extrinsic semiconductor, conduction electron concentration (n_e) is greater than concentration of hole (n_p) . i.e. $n_e > n_p$.

31 **(c)**

In intrinsic semiconductors, the number of free electron, n_e is equal to the number of holes n_h , i.e. $n_e = n_h = n_i$, where n_j is called intrinsic carrier concentration, $I = I_p + I_e$.

32 **(b)**

Holes behave as positive charge carriers, electrons have negative charge. Thus, gallium Arsenide is an alloy semiconductor where Ga contributes holes and As contributes electrons.

33 **(a)**

For metal, $E_g = 0$, hence valence band and conduction band overlap each other.

34 **(b)**

In reverse bias p - n junction diode, depletion layer width increases.

35 **(c)**

At junction, a potential barrier/depletion layer is formed with n-side at higher potential and p-side at lower potential. Therefore, there is an electric field at the junction directed from the n-side to pside.

36 **(b)**

Resistance of thermistor changes with change in temperature of surrounding.

37 **(b)**

The concept of hole describes the lack of an electron at a position where one could exist in an atom or atomic lattice. If an electron is excited into a higher state, it leaves a hole in its old state. Thus, hole can be defined as a vacancy created when an electron leaves a covalent bond.

39 **(c)**

The n-type semiconductor can be produced by doping an impurity atom of valence 5 i.e. pentavalent atoms, i.e. phosphorus.

40 **(c)**

In forward biasing condition, the inner electric field is

given by $E = -\frac{\Delta V}{\Delta r}$

0r

$$|E| = \frac{\Delta V}{\Delta r} = \frac{5 \times 10^{-1}}{10^{-6}}$$

= 5 × 10⁵ Vm⁻¹

41 **(a)**

Drift current in a p - n junction diode flows in the direction of electric field applied, i.e. from *n*-side to *p*-side.

43 **(a)**

In forward biased diode connection, *p*-side is at higher potential and *n*-side is at lower potential.

44 **(b)**

 $E_g(\text{Si}) > E_g(\text{Ge}) < E_g(\text{C})$

45 **(b)**

In an extrinsic semiconductor, $n_e n_h = (n_i)^2$

$$n_e \times 4.5 \times 10^{22} = (15 \times 10^{16})^2$$

$$n_e = \frac{2.25 \times 10^{32}}{4.5 \times 10^{22}} = 5 \times 10^9$$

46 **(b)**

Pentavalent impurity atom is to be added to Ge crystal, so as to make a *n*-type semiconductor.

47 **(d)**

When temperature of intrinsic semiconductor increases, then due to breaking of some more covalent bonding, some extra electron-hole pair are generated, hence conductivity of intrinsic semiconductor increases. When temperature of *p*type semiconductor increases, then charge carriers and its mobility increases, hence its conductivity is increased.

49 **(b)**

Pure Cu is already an excellent conductor, since it has a partially filled conduction band. Further more, Cu forms a metallic crystal as opposed to the covalent crystals of silicon or germanium, so the process of using an impurity of donate or accept an electron does not work for copper. Infact adding impurities to copper decreases the conductivity because an impurity tends to scatter electrons, impeding the flow of current.

50 **(b)**

When a small amount of antimony is added to germanium crystal, the crystal becomes *n*-type semiconductor because antimony is a pentavalent impurity. In n-type semiconductor, large number of free electrons are produced, hence electrons become majority carriers.

51 **(a)**

In semiconductors, at a room temperature, the valence band is partially empty and the conduction band is partially filled.

52 **(b)**

Potential barrier developed in p - n junction diode opposes the flow of majority carriers only.

53 **(c)**

An *n*-type semiconductor by itself has mainly negative charge carriers (electrons) which are able to move freely, but it is still neutral because the fixed donar atoms, having donated electrons, are positive. Hence, *n*-type material is neutral.

54 **(d)**

$$n_e = 10^{16} \text{ per } m^3, n_e = \frac{10^{21}}{m^3}, n_n = ?$$

$$\therefore n_e n_h = n_i^2$$

$$\therefore n_h = \frac{n_i^2}{n_e} = \frac{(10^{16})^2}{10^{21}}$$

$$= \frac{10^{32}}{10^{21}} = 10^{11} / m^3$$

55 **(c)**

Integrated circuit is an electronic device in which thousands of diodes and transistors are fabricated on single chip.

56 **(a)**

When conductivity of semiconductor is only due to breaking of covalent bond, then semiconductor is intrinsic or pure semiconductor.

57 **(c)**

The thickness of depletion region of p - n junction is of the order 10^{-6} m.

58 **(c)**

Si and Ge have four valence electrons. In its crystalline structure, every Si or Ge atom tends to share one of its four valence electrons with each of its four nearest neighbour atoms and also to take share of one electron from each such neighbour.

These shared electron pairs are referred to as forming a covalent bond or simply a valence band.

61 **(d)**

Curve S shows forward bias characteristics of a diode.

63 **(a)**

Due to the reverse biasing, the width of depletion region increases and current flowing through the diode is almost zero. In this case, electric field is almost zero at the middle of the depletion region.

64 **(c)**

The diffusion of charge carriers across a junction takes place from the region of higher concentration. In this case, hole concentration in *p*-region is more as compared to *n*-region.

65 **(a)**

In forward bias of p - n junction, diffusion current is due to majority carriers and drift current is due to minority carriers, hence diffusion current is greater than drift current in p - n junction.

67 **(c)**

The diode is forward biased. The potential difference between P and Q is (3-5) = 8 V.

$$I = \frac{V}{R} = \frac{8}{2 \times 10^3} = 4 \times 10^{-3} A$$

68 **(d)**

An n-type and p-type silicon semiconductor can be obtained by doping pure silicon with arsenic and boron respectively

69 **(c)**

In the case of forward bias, the potential barrier opposes the applied voltage. Hence, the potential across the junction gets reduced.

70 **(c)**

On increasing the temperature, the current in the circuit will increase because with rise in temperature, resistance of semiconductor decreases, hence overall resistance of the circuit decreases, which in turn increases the current in the circuit.

71 **(a)**

In insulators, the forbidden energy gap is quite large. For example, the forbidden energy gap for diamond is 6eV, which means that minimum of 6eV energy is required to make the electron jump from the completely filled valence band to conduction band.

Hence, for insulator, $3eV < E_g < 6eV$.

72 **(d)**

Theory question

74 **(b)**

p-type semiconductor is obtained by adding a small amount of trivalent impurity to a pure sample of semiconductor (Ge).

In *p*-type semiconductor, majority charge carriers are holes and minority charge carriers are electrons

However, *n*-type semiconductor is obtained by adding a small amount of pertavalent impurity to a pure sample of semiconductor (Ge).

In *n*-type semiconductor, majority charge carriers are electrons and minority charge carriers are holes.

The resistance of intrinsic semiconductors

decreases with increase of temperature.

76 **(c)**

Resistivity of conductors increases with temperature and that of semiconductor decreases with temperature.

When temperature is decreased, the resistivity of copper will decrease while that of silicon will increase.

77 **(b)**

The difference in the variation of resistance with temperature in metal and semiconductor is caused due to difference in the variation of the number of charge carriers with temperature.

78 **(a)**

At room temperature, a p-type semiconductor has large number of holes and few electrons, as holes are majority charge carriers.

79 **(c)**

Doping elements are called impurities, therefore the process of adding impurities to the pure semiconductor is known as doping.

82 (a)

In a semiconductor diode, the barrier potential offers opposition to the flow of electrons from *n*-region to *p*-region and holes from *p*-region to *n*-region, i.e. barrier potential offers opposition to only majority carriers in both regions.

84 **(d)**

In an extrinsic semiconductor, if doping is done by using a pentavalent impurity, then number of electrons are more than number of holes and if a trivalent impurity is used, then number of holes are more than number of electrons.

85 **(b)**

If p-n junction diode is reversed biased, width of depletion layer increases.

86 **(a)**

As we know, current density, J = nqv

 $\Rightarrow J_e = n_e q v_\theta$ and $J_h = n_h q v_h$

or
$$\frac{J_{\theta}}{J_h} = \frac{n_e}{n_h} \times \frac{v_e}{v_h} \Rightarrow \frac{\frac{3}{4}}{\frac{1}{4}} = \frac{n_e}{n_h} \times \frac{5}{2} \Rightarrow \frac{n_e}{n_h} = \frac{6}{5}$$

Theory question

89 **(b)**

In a p-type semiconductor, holes are majority carriers and trivalent atoms are dopants.

90 **(c)**

The *n*-type semiconductor can be obtained by doping a pentavalent impurity e.g. Phosphorous. In this semiconductor, holes are minority charge carriers and electrons are majority charge carriers.

92 **(d)**

The four number of electrons are found in the valence shell of a semiconductor.

93 **(c)**

The conductivity of a semiconductor is given by $\sigma = n_e e \mu_e + n_h e \mu_h$ where, $n_e \& n_h =$ number of electrons & holes per unit volume and $\mu_e \& \mu_h =$ mobility of electrons & holes. When impurity atoms are added in a semiconductor, then the concentration of holes and electrons increases. So, the conductivity

increases and hence the resistivity $\left(\rho = \frac{1}{\sigma}\right)$ of semiconductor decreases.

95 **(d)**

Electrical conductivity of insulators is extremely small because very few electrons are present in conduction band.

96 **(c)**

In circuit X, both the diodes are forward biased and hence both will conduct.

The two resistances of 4 Ω each are in parallel. Their equivalent resistance is 2 Ω . Hence the current

$$I = \frac{v}{R} = \frac{8}{2} = 4 A$$

In the circuit Y, the diode D_1 is forward biased but diode D_2 is reverse biased. Hence only diode D_1 will contact. The resistance is 4 A.

Hence I =
$$\frac{8}{4}$$
 = 2 A

97 **(b)**

Germanium is a semiconductor and possesses negative temperature coefficient. Therefore, when temperature of germanium is decreased, its resistance increases. 99 **(b)**

The diode is forward bias and hence it will conduct. Its resistance is taken as zero.

P. D. between P and
$$Q = 4 - (-6) = 10 V$$

$$I = \frac{V}{R} = \frac{10}{10^3} = 10^{-2} A$$

100 **(c)**

At absolute zero temperature, intrinsic semiconductor behaves as insulator

103 **(c)**

Devices in which a controlled flow of electrons can be obtained are the basic building blocks of all the electronic circuits.

104 **(d)**

When forward bias is applied to a p-n junction then $V_{\rm B}$ decreases and W decreases.

105 **(a)**

As $n_e > h_h$, so semiconductor is *n*-type.

Also, conductivity
$$(\sigma) = \frac{1}{\text{Resistivity }(\rho)}$$

= $e(n_e\mu_e + n_h\mu_h)$

$$\Rightarrow \frac{1}{\rho} = 16 \times 10^{-19} [8 \times 10^{18} \times 2.3 + 5 \times 10^{18} \times 0.01]$$

 $\Rightarrow \rho = 0.34\Omega - m$

106 **(c)**

The majority charge carriers in *p*-type semiconductor are holes, while electrons are minority charge carriers.

107 **(d)**

The trivalent impurities provide holes to create positive charge carriers in *p*-type semiconductor. Hence, majority carriers in *p*-type semiconductor are holes.

108 **(b)**

In circuit (a) the two diodes are in series and one of the diodes is reverse biased. Hence no current will flow in the circuit and ammeter will not show any deflection.

109 **(b)**

(i) Metals They possess very low resistivity (or

high conductivity).

 $\rho \sim 10^{-2} - 10^{-8}\Omega - m, \sigma \sim 10^2 - 10^8 \mathrm{Sm}^{-1}$

(ii) **Semiconductors** They have resistivity or conductivity intermediate to metals and insulators.

$$ho - 10^{-5} - 10^6 \Omega - m$$
, $\sigma \sim 10^5 - 10^{-6} {
m Sm}^{-1}$

(iii) **Insulators** They have high resistivity (or low conductivity).

$$\rho \sim 10^{11} - 10^{19} \Omega - m$$

 $\sigma \sim 10^{-11} - 10^{-19} \, \mathrm{S \, m^{-1}}$

As,
$$10^8 > 10^5 > 10^{-19} \Rightarrow \sigma_m > \sigma_s > \sigma_i$$

111 **(b)**

In n-type semiconductor, pentavalent impurity are dopants and electrons are majority carriers.

112 **(a)**

At the atomic separation of 2Å to 3Å, the energy of outermost electrons changes by larger amounts due to atomic interactions.

113 **(b)**

In a reverse biased *p*-n junction, when the applied voltage is equal to the breakdown voltage, then voltage remains constant while current increases sharply.

114 **(d)**

Resistance of conductor (Cu) decreases with decrease in temperature while that of semiconductor (Ge) increases with decrease in temperature because coefficient of thermal resistance is positive for copper and negative for germanium.

115 **(b)**

The electrical conductivity of p-type semiconductor is determined by the number of holes.

116 **(a)**

Theory question

17 (a)
I =
$$\frac{3-1}{100} = \frac{2}{100} = 2 \times 10^{-2} = 20 \times 10^{-3} \text{ A}$$

118 **(b)**

1

Diode D_1 is forward biased, while diode D_2 is reverse biased. Hence current will flow only through D_1 . Total resistance

$$3 + 2 = 5\Omega$$

$$\therefore I = \frac{V}{R} = \frac{10}{5} = 2 A$$

120 **(b)**

Graph between potential and distance in a p - n junction diode is given by

 \therefore Potential at *p* is less than that at *n*.

121 (c)

To form an *n*-type semiconductor doping is done by using a pentavalent impurity, like phosphorous, arsenic, etc. and to form a *p*-type semiconductor doping is done by using a trivalent impurity like indium, boron, etc.

122 (d)

A solid with completely filled valence band is an insulator, if the energy gap between the valence band and the empty conduction band is larger than 3eV.

123 **(b)**

In reverse biasing of p - n junction diode, the applied reverse voltage establishes an electric field which acts in the same direction as the electric field in the potential barrier. Therefore, the height of potential barrier is increased.

124 (d)

Extrinsic semiconductors are also electrically neutral.

125 **(a)**

Mobility of electrons are higher than that of holes because electrons need less energy to move.

126 **(d)**

The forward voltage overcomes the barriervoltage. Due to which, the forward current is high1

but depends upon the forward voltage applied. The reverse voltage supports the barrier voltage due to which the reverse current is low.

127 (d)

In a good conductor, the conduction band and valence band overlap each other. Hence, energy gap, $E_g = 0$.

128 **(a)**

The probability of electrons to be found in the conduction band of an intrinsic semiconductor at a finite temperature decreases exponentially with increasing band gap.

129 **(b)**

At a specific reverse voltage in p - n junction, a huge current flows in reverse direction known as Avalanche current.

130 **(b)**

$$n_i = 1.6 \times 10^{16} \text{ m}^{-3}$$
, $n_h = 4 \times 10^{22} \text{ m}^{-3}$

 $n_e n_h = n_h$

$$\therefore n_{e} = \frac{n_{i}^{2}}{n_{h}} = \frac{(1.6 \times 10^{16})^{2}}{4 \times 10^{22}} = \frac{1.6 \times 1.6 \times 10^{32}}{4 \times 10^{22}}$$

$$= 6.4 \times 10^9 \,\mathrm{m}^{-1}$$

132 **(c)**

If n_i is the number density of electrons and holes in intrinsic (pure) semiconductor and n_e and n_h are electron and hole number carrier in extrinsic (doped) semiconductor then we have

$$n_e n_h = n_i^2$$

$$n_e = \frac{n_i^2}{n_h} = \frac{1.5 \times 10^{16} \times 1.5 \times 10^{16}}{4.5 \times 10^{22}} = 5 \times 10^9$$

133 **(c)**

Semiconductors are similar to insulators but the conduction and valence bands are spaced closely, so that at room temperature, a number of electrons are found in conduction band. For germanium, forbidden energy gap = $0.70 \text{ eV} = 0.70 \times 16 \times 10^{-19} = 1.12 \times 10^{-19} \text{ J} = 1.1 \times 10^{-19} \text{ J}$

134 **(b)**

The energy band gap of Si is 1.1eV.

135 **(b)**

At room temperature, forbidden energy gap for Si (1.12eV) is higher than the forbidden energy gap of Ge (0.72eV). Hence, at room temperature, less number of electron-hole pairs will be generated in silicon than in germanium.