N.B.Navale

Date : 01.04.2025 **Time** : 03:00:00 **Marks : 200**

SOME BASIC CONCEPTS OF CHEMISTRY, 1. SOME BASIC CONCEPTS OF CHEMISTRY

I

Single Correct Answer Type

Sing	Single Correct Answer Type			metal oxide are formed	l Hence, equivalent mass
1.	3.011×10^{23} atoms of	an element weights		of the metal is	
	1.15 g. The atomic mas	ss of the element is		a) 4.44 g	b) 9.00 g
	a) 23	b)10		c) 5.00 g	d) 2.22 g
	c) 16	d)35.5	9.	Sulphur forms the chlo	rides S ₂ Cl ₂ and SCl ₂ ; the
2.	To what extent must a	given solution		equivalent mass of the	sulphur in SCl ₂ is 16 g
	containing 40 mg AgN	O_3 per mL be diluted to		equivalent ⁻¹ . Thus, ec	uivalent mass of the
	yield a solution contain	ning 16 mg AgNO ₃ per		sulphur in S_2Cl_2 is	
	mL?			a) 8 g equivalent $^{-1}$	b)16 g equivalent ⁻¹
	a) Each mL must be	b) To each mL of		c) 32 g equivalent $^{-1}$	d) 64 g equivalent $^{-1}$
	diluted to 2.5 mL	solution 2.5 mL of	10.	11.2 litre of NH ₃ at STF	has electrons:
		water should be		a) 3.01×10^{21}	b) 3.01×10^{22}
		added		c) 3.01×10^{25}	d) 3.01×10^{24}
	c) To 1.5 mL of solutio	nd) To 1.5 mL of solution	11.	The minimum quantity	v of H ₂ S needed to
	2.5 mL of water	1.5 mL of water		precipitate 63.5 g of Cu	1^{2+} will be nearly:
	should be added	should be added		a) 63.5 g	b) 31.75 g
3.	Dissolving 120 g of ur	ea (mol.wt.60) in 1000 g		c) 34 g	d)20 g
	of water gave a soluti	on of density 1.15 g/mL.	12.	Number of atoms in 12	g_{12}^{24} Mg is equal to
	The molarity of the sol	ution is:		oxygen atoms in	hvdrogen atoms in
	a) 1.78 <i>M</i>	b) 2.00 <i>M</i>		a) $11 g CO_2$	b) 4 g CH_4
	c) 2.05 <i>M</i>	d) 2.22 <i>M</i>		nitrogen atoms in	sulphur atoms in
4.	How many moles of m	agnesium phosphate,		c) $_{46 \text{ g } \text{N}_2 \text{O}_4}$	d) $^{1}_{79 \text{ gNa}_{2}\text{S}_{2}\text{O}_{3}}$
	$Mg_3(PO_4)_2$ will contai	n 0.25 moles of oxygen	13.	Vapour density of a vol	atile substance is 4
	atoms?			$(CH_4 = 1)$. Its molecula	ar weight would be:
	a) 0.02	b) 3.125×10^{-2}		a)8	b)2
	c) 1.25×10^{-2}	d) 2.5×10^{-2}		c) 64	d)128
5.	The haemoglobin from	the red blood	14.	Equal volumes of 0.1 M	AgNO ₃ and 0.2 M NaCl
	corpuscles of most ma	mmals contains		are mixed. The concent	tration of NO_3^- ions in
	approximately 0.33%	of iron by weight. The		the mixture will be:	5
	molecular weight of ha	aemoglobin as 67,200.		a) 0.1 <i>M</i>	b) 0.05 <i>M</i>
	The number of iron at	oms in each molecule of		c) 0.2 <i>M</i>	d)0,15 <i>M</i>
	haemoglobin is (atomi	c weight of iron = 56):	15.	Which of the following	statement is correct
	a) 2	b)3		about the reaction give	n below?
	c) 4	d)5		$4Fe(s) + 3O_2(g) \rightarrow 2F$	$e_2 0_3(g)$
6.	The mass of 112 cm ³ c	of CH ₄ gas at STP is		Total mass of iron	
	a) 0.16 g	b) 0.8 g		and oxygen in	Total mass of
	c) 0.08 g	d) 1.6 g		reactants $=$ total	reactants = total
7.	1.0 g of hydrogen cont	ains 6 $ imes$ 10 ²³ atoms. The		, mass of iron and	mass of product,
	atomic weight of heliu	m is 4. If follows that the		aJ oxygen in product	^b therefore, law of
	number of atoms in 1 g	g of He is:		therefore it follows	multiple proportions
	a) $1/4 \times 6 \times 10^{23}$	b)4 × 6 × 10^{23}		law of conservation	is followed
	c) 6×10^{23}	d) 12×10^{23}		of mass	

c) Amount of Fe_2O_3

8. In the combustion of 5.00 g of a metal, 9.44 g of

TEST ID: 67

CHEMISTRY

	can be increased by taking any one of the reactants (iron or oxygen) in excess	produced will decrease if the amount of any one of the reactants (iron or oxygen) is taken in excess	23.	mass is 28 displ acid. Hence, mas a) 1.75 g c) 3.50 g What is the quas when 46 g sodiu	aces 0.7 L of H_2 at STP from an ss of the element is b) 0.875 g d) 7.00 g ntity of hydrogen gas liberated um reacts with excess ethanol?
16.	In a gaseous reaction of $cC + dD$, which is wrong	the type $aA + bB \rightarrow a^{2}$		(Given atomic m a) 2.4×10^{-3} kg	hass of Na = 23) (b) 2.0×10^{-3} kg (b) 2.1×10^{-2} kg
	 a litre of A combines a) with b litre of B to b give C and D a g of A combines c) with b g of B to give C C and D 	a mole of A combines with b mole of B to give C and D a molecules of A combines with b molecules of B to give C and D	24.	c) 4.0×10^{-3} kg Cyclohexanol is heating with con- reaction is 75%, obtained from 1 a) 61.5 g c) 20.0 g Volume of 0.1 <i>M</i>	g d) 2.4×10^{-2} kg dehydrated to cyclohexene on nc. H ₂ SO ₄ . If the yield of this , how much cyclohexene will be .00 g of cyclohexanol? b) 75.0 g d) 41.0 g t NaOH needed for the
17.	One part of an element A parts of B (another elem element C combine with B. If A and C combine tog their masses will be gove a) law of definite proportions c) law of reciprocal	a combines with two ent). Six parts of four parts of element gether, the ratio of erned by b) law of multiple proportions l) law of conservations	26.	neutralisation o a) 10 mL c) 20 mL The same amou 0.200 g of oxyge Hence, equivale a) 127 g c) 35.5 g	f 20 mL of 0.05 <i>M</i> oxalic acid is: b) 15mL d) 30 mL nt of a metal combines with en and with 3.17 g of a halogen. nt mass of halogen is b) 80 g d) 9 g
18.	The largest number of m a) $36 \text{ g H}_2 \text{ 0}$	ol mass olecules are in:) 28 g CO	27.	burns to carbon of carbon dioxid	dioxide and water, the weight le formed is about:
19.	c) $46 \text{ g } \text{C}_2 \text{H}_5 \text{OH}$ control $171 \text{ g of cane sugar (molection)}$ dissolved in 1000 g of we density of solution is 1.1 a) Molarity < molality to the control $100 \text{ g of we have a started of solution}$	1) 54 g N ₂ O ₅ . wt. = 342) are ater at 30°C. If the g/mL, then: b) Molarity = molality l) None of these	28.	a) 22 g c) 66 g The hydrated sa 55% loss in wei anhydrous. The a) 5	b) 45 g d) 88 g alt Na ₂ SO ₄ \cdot <i>n</i> H ₂ O, undergoes ght on heating and becomes value of <i>n</i> will be: b) 3
20.	A solution contains Na ₂ C mL of the solution require M H ₂ SO ₄ for neutralization using p indicator. Methyl orange further 2.5 mL of 0.2 M H The amount of Na ₂ CO ₃ in is:	CO_3 and NaHCO ₃ .10 red 2.5 mL of 0.1 phenolphthalein as is then added when a H_2SO_4 was required. In 1 litre of the solution	29.	c) 7 When 100 g of e polyethylene ac $nCH_2 = CH_2 \longrightarrow$ The weight of period a) $\frac{n}{2}g$ c) $\frac{100}{2}g$	d) 10 ethylene polymerizes to cording to the equation, $-(CH_3 - CH_2)_n$. olyethylene produced will be: b) 100 g
21.	a) 5.3 g and 4.2 g f c) 4.2 g and 5.3 g f In the standardisation of $K_2Cr_2O_7$ by iodometry, t of $K_2Cr_2O_7$ is	b) 3.3 g and 6.2 g l) 6.2 g and 3.3 g F N ₂ S ₂ O ₃ using he equivalent weight	30.	<i>n</i> Molarity of liqui 1.17 g/mL is: a) 36.5 c) 32.05	b) 18.25
	a) $\frac{\text{molecular weight}}{2}$ b c) $\frac{\text{molecular weight}}{2}$ c	$\frac{\text{molecular weight}}{6}$	31.	50 mL of an contains 6.0 concentration o	aqueous solution of glucose 2×10^{22} molecules. The f solution is:
22.	3 A certain amount of a mo	weight etal whose equivalent		a) 0.1 <i>M</i>	b) 1.0 <i>M</i>

	c) 3.50 g	d)7.00 g
3.	What is the quantity of	hydrogen gas liberated
	when 46 g sodium react	s with excess ethanol?
	(Given atomic mass of N	la = 23)
	a) 2.4×10^{-3} kg	b) 2.0×10^{-3} kg
	c) 4.0×10^{-3} kg	d) 2.4 × 10^{-2} kg
4.	Cyclohexanol is dehydra	ated to cyclohexene on
	heating with conc. H ₂ SC	0 ₄ . If the yield of this
	reaction is 75%, how m	uch cyclohexene will be
	obtained from 100 g of	cyclohexanol?
	a) 61.5 g	b) 75.0 g
	c) 20.0 g	d) 41.0 g
5.	Volume of 0.1 M NaOH	needed for the
	neutralisation of 20 mL	of 0.05 <i>M</i> oxalic acid is:
	a) 10 mL	b)15mL
	c) 20 mL	d)30 mL
6.	The same amount of a n	netal combines with
	0.200 g of oxygen and w	vith 3.17 g of a halogen.
	Hence, equivalent mass	of halogen is
	a) 127 g	b)80 g
	c) 35.5 g	d)9g
7.	If one mole of ethanol (C ₂ H ₅ OH) completely
	burns to carbon dioxide	and water, the weight
	of carbon dioxide forme	ed is about:
	a) 22 g	b) 45 g
	c) 66 g	d) 88 g
8.	The hydrated salt Na ₂ S	$O_4 \cdot nH_2O$, undergoes
	55% loss in weight on h	eating and becomes
	anhydrous. The value of	f <i>n</i> will be:
	a) 5	b)3
	c) 7	d)10
9.	When 100 g of ethylene	polymerizes to
	polyethylene according	to the equation,
	$nCH_2 = CH_2 \longrightarrow -(CH_3 -$	$CH_2 \rightarrow n$.
	The weight of polyethyl	ene produced will be:
	n	b)100 g
	$a_{j} \frac{1}{2}g$, .
	c) $\frac{100}{2}$ g	d)100 <i>n</i> g
0		
J.	Molarity of liquid HCI w	ith density equal to
	1.1/g/mL is:	
	aj 30.5	DJ 18.22
1	CJ 32.03	uj4.00
1.	50 IIIL OI an aqueou	2 moloculos
	contains 6.02×10^2	- molecules. The
	concentration of solutio	11 15.

	c) 0.2 <i>M</i>	d) 2.0 <i>M</i>
32.	What is the mass of or	ne molecule of yellow
	phosphorus? (Atomic	mass, $P = 30$)
	a) 1.993×10^{-22} mg	b) 1.993×10^{-19} mg
	c) 4.983×10^{-20} mg	d) 4.983 $\times 10^{-23}$ mg
33.	The molarity of 2 N H	2S0₄is:
	a) 1 <i>M</i>	b) 2 M
	c) $3M$	d) 4 M
34	5.85 g of NaCl dissolv	red in H_2O and solution is
0 11	made upto 500 mL. Tl	ne molarity is:
	a) 0.1	b) 0.2
	c) 1.0	d) 0.117
35.	An aqueous solution of	of urea containing 18 g
	urea in 1500 cm^3 of se	olution has a density of
	1.052 g/cm^3 . If the mo	plecular weight of urea is
	60, then the molality of	of solution is:
	a) 0.2	b) 0.192
	c) 0.064	d) 1.2
36.	What weight of silver	chloride will be
00.	precipitated when a s	olution containing 4.77 g
	of <i>NaCl</i> is added to a	solution of 5.77 g of
	$AgNO_{2}?$ (Na = 23, Cl =	= 35.5. Ag = 108. N = 14
	and $0 = 16$)	
	a) 4.37 g	b)4.87 g
	c) 5.97 g	d) 3.87 g
~ -	, , , , , , , , , , , , , , , , , , , ,	, 0
37.	6.02×10^{20} molecule	s of urea are present in
37.	6.02×10^{20} molecule 100 mL of its solution	s of urea are present in on. The molarity of urea
37.	6.02×10^{20} molecule 100 mL of its solution is:	s of urea are present in on. The molarity of urea
37.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1	s of urea are present in on. The molarity of urea b)0.01
37.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02	s of urea are present in on. The molarity of urea b)0.01 d)0.001
37.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when o	s of urea are present in on. The molarity of urea b)0.01 d)0.001 decomposed produces
37.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydr	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in
37.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is:	s of urea are present in on. The molarity of urea b)0.01 d)0.001 decomposed produces ogen. The change in
37.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease
37.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydr volume is: a) 50 mL increase c) 900 mL decrease	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these
37. 38. 39.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal
37. 38. 39.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is:	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal
37. 38. 39.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydr volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018
37. 38. 39.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036
37. 38. 39. 40.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is
37.38.39.40.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g
37.38.39.40.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydro volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g c) 17 g	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g d) 4.25 g
 37. 38. 39. 40. 41. 	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydro volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g c) 17 g 1.520 g of the hydroxi	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g d) 4.25 g de of a metal on ignition
37.38.39.40.41.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g c) 17 g 1.520 g of the hydroxi gave 0.995 g of oxide.	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g d) 4.25 g de of a metal on ignition The equivalent weight of
37.38.39.40.41.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g c) 17 g 1.520 g of the hydroxi gave 0.995 g of oxide. metal is	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g d) 4.25 g de of a metal on ignition The equivalent weight of
37.38.39.40.41.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g c) 17 g 1.520 g of the hydroxi gave 0.995 g of oxide. metal is a) 1.520	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g d) 4.25 g de of a metal on ignition The equivalent weight of b) 0.995
37.38.39.40.41.	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g c) 17 g 1.520 g of the hydroxi gave 0.995 g of oxide. metal is a) 1.520 c) 19.00	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g d) 4.25 g de of a metal on ignition The equivalent weight of b) 0.995 d) 9.00
 37. 38. 39. 40. 41. 42. 	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydre volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g c) 17 g 1.520 g of the hydroxi gave 0.995 g of oxide. metal is a) 1.520 c) 19.00 What weight of sodium	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g d) 4.25 g de of a metal on ignition The equivalent weight of b) 0.995 d) 9.00 m hydroxide is required
 37. 38. 39. 40. 41. 42. 	6.02×10^{20} molecule 100 mL of its solution solution is: a) 0.1 c) 0.02 100 mL of PH ₃ when of phosphorus and hydro volume is: a) 50 mL increase c) 900 mL decrease The mole fraction of s aqueous solution is: a) 0.009 c) 0.027 The mass of 11.2 L of a) 8.5 g c) 17 g 1.520 g of the hydroxi gave 0.995 g of oxide. metal is a) 1.520 c) 19.00 What weight of sodium to neutralize 100 mL of	s of urea are present in on. The molarity of urea b) 0.01 d) 0.001 decomposed produces ogen. The change in b) 500 mL decrease d) None of these olute in one molal b) 0.018 d) 0.036 ammonia gas at STP is b) 85 g d) 4.25 g de of a metal on ignition The equivalent weight of b) 0.995 d) 9.00 m hydroxide is required of 0.1 <i>N</i> HCl?

	c) 0.4 g	d) 2.0 g
43	Polvethylene can be pr	oduced from calcium
	carbide according to th	ne following sequence of
	reactions:	ie ione inng sequence of
	$CaC_2 + H_2O \rightarrow CaO + 1$	$HC \equiv CH$
	$n \text{HC} \equiv \text{CH} + n \text{H}_2 \longrightarrow (\text{CH})$	$H_2 - CH_2 \rightarrow n$
	The mass of polyethyle	ne which can be
	produced from 20.0 kg	of CaC ₂ is:
	a) 6 75 kg	h) 7 75 kg
	c) 8.75 kg	d) 9 75 kg
44	The number of Cl^- and	C_{2}^{2+} jons in 222 g
1 1.	CaCl ₂ are :	
	a) $4 N. 2 N$	$h_{2} N_{4} N_{1}$
	c) $1 N 2 N$	d) 2 N 1 N
45	The number of moles of	$f(NH_{4})_{a}SO_{4}Fe_{a}(SO_{4})_{a}$
101	$24 \text{ H}_{2}\text{O}$ formed from a	sample containing
	0.0056 g of Fe is	sample containing
	2×10^{-4} mol	h) 0.5×10^{-4} mol
	c) 2×10^{-4} mol	d) 0.33×10^{-4} mol
46	If 30 mL of H ₂ and 20 m	$0.00.55 \times 10^{-10}$ more
т 0.	water what is left at th	a and of reaction.
	a) 10 mL H ₂	h)5 mJ H ₂
	c) $10 \text{ mL } \Omega_2$	$d)5 \text{ mL } \Omega_{2}$
47	An aqueous solution	of 6.3 σ ovalic acid
()	dihydrate is made up to	of 0.5 g oxalle actual
	0.1 N NaOH required to	o completely neutralised
	10 mL of this solution i	s:
	a) 40 mL	b) 20 mL
	c) 10 mL	d)4 mL
48.	2.79 g of silver carbona	ite on being strongly
	heated yields a residue	weighing:
	a) 2.16 g	b) 2.48 g
	c) 2.32 g	d)2.64 g
49.	1.60 g of a metal were	dissolved in HNO ₂ to
	prepare its nitrate. The	nitrate on strong
	heating gives 2 g oxide.	The equivalent weight
	of metal is:	1 0
	a) 16	b)32
	c) 48	d)12
50.	The number of Cl ⁻ ions	present in 222 g
	anhydrous CaCl ₂ is	
	a) 1.2×10^{22}	b) 6.023×10^{23}
	c) 2.63 \times 10 ²²	d) 2.409 $\times 10^{24}$
51.	Any quantitative obser	vation or measurement
	is represented by A foll	owed by B in which it is
	measured. A and B rest	pectively are
	$A \rightarrow units, B \rightarrow$, A → alphabet. B →
	a) number	b) inits.
	$A \rightarrow$ number, B \rightarrow	$A \rightarrow$ roman numeral.
	c) units	^{a)} $B \rightarrow number$

52.	By heating 10 g CaCO weight of CO_2 obtaine	3, 5.6 g CaO is formed. The ed in this reaction is		a) 0.6 litre CO 0.6 litre CO
	a) 2.4 g	DJ 5.6 g	()	Intre CO
F 2	C) 4.4 g The media free stiens of \mathbf{N}	a) 3.6 g	63.	I ne mole frac
53.	The mole fraction of N	ACLINA SOLUTION		of nitrogen an
	containing 1 mole of r	Naci în 1000 g of water is		$a_{J}8/5$
		1.2.0.001	6.4	c) 0.25
	a) 0.0177	b)0.001	64.	The oxygen of
F 4				a) / 2 kg
54.	Equal weight of Fe_2O	$_3$ and FeO has weight of		C) 50 Kg
	oxygen in the ratio:	h) 0.74	65.	How many mo
	a) 1.35	DJ0.74		$Mg_3(PU_4)_2 W$
	$C_{\rm J}$ U.37	ujz./		
55.	H_3PO_4 is a tribasic act	a and one of its saits is		a) 0.02
	NaH_2PO_4 . What volume	ne of 1 M NaOH should be		$C = 1.25 \times 10^{-5}$
	added to 12 g NaH ₂ PC	D_4 (mol. wt. 120) to	66.	I ne ionic stre
	exactly convert it into	Na_3PU_4 ?		0.1 M Naci an
	a) 100 mL	d) 20 mL		a) 0.2
٦c	CJ 200 IIIL	ajou mil		CJ U.3
50.	Stoicniometric ratio o	r soalum ainyarogen	67.	10 ²¹ molecule
	orthophosphate and s	odium nydrogen		CO_2 . The mole
	No. D. Q. in	fred for synthesis of		a) 2.88×10^{-3}
	$Na_5P_3U_{10}$ is	h)2.1 F	(0)	c) 288×10^{-3}
	a) $1.5:3$	$D_{J3} : 1.5$	68.	What is the SI
F 7	C J I : I	$a_{j2}:3$		equivalent?
57.	The number of atoms	In 3.2 g of oxygen gas		a) Js ⁻¹
	are: (0.2×10^{22})	h (02 × 10 ²³		c) kgC
	a) 12.04×10^{-2}	$D_{12} 0.02 \times 10^{-2}$	69.	The term stan
гo	C) 12.04 \times 10	d $J 12.04 \times 10^{-1}$		solutions who
58.	In the aqueous solution	on of support actuation		a) Normality i
	the solution is	r is 0.85. the molality of	70	c) Strength is
	che solution is :	b) 0 10 m	70.	If 1.2 g of a m
	a) $0.9 m$	d 15 m		at normal ter
ГO	CJ 9.8 III	$u_{j15}m$		equivalent we
59.	18	III I L OI Water is close to		a) 12
	a) $\frac{10}{22.4} \times 10^{23}$	b) 55.5 × 6.023 × 10^{23}	71	$C = 1.2 \times 11.2$
	6.023		/1.	if the density
	c) $\frac{1}{23.4} \times 10^{23}$	d) 18 × 6.023 × 10 ²³		its volume ne
60.	The equivalent weigh	t of an acid is obtained by		solution?
	dividing its mol. wt. b	y its:		a) 4 IIIL
	a) Acidity	b) Basicity	70	CJ 40 mL.
	c) pH	d)None of these	12.	I ne volume o
61.	Consider the followin	g units of energy. A:1 L		compustion o
	atm, B : 1 erg, C : 1 J, I	D : 1 kcal, increasing		a) 9333.33 lit
	order of these values	is	70	c) 93.33 litre
	a) $A = B = C = D$	b) A < B < C < D	/3.	1.0 g of magne
	c) B < C < A < D	d) D < A < C < B		ciosea vessel.
62.	One litre of CO ₂ is pas	sed over hot coke. The		and now muc
	volume becomes 1.4 l	itre. The per cent		10)
	composition of produ	cts is:		aj 141g, 0.16 g
			-	

	a) 0.6 litre CO	b) 0.8 litre CO ₂
	$^{0.6}$ litre CO ₂ and 0.8 c) litre CO	d)None of the above
33	The mole fraction of ov	vgen in 2 mixture of 7 g
55.	of nitrogen and 8 g of o	ygen in a mixture or 7 g
	a $8/5$	h)05
	$a_{1}0_{7}5$	d) 1 0
54	The ovugen obtained fr	om 72 kg of water is
л.	a) 72 kg	h $46 kg$
	c) 50 kg	d) 64 kg
55	How many moles of ma	agnesium phosphate
55.	$Mg_{-}(PO_{-})_{-}$ will contain	0.25 mole of oxygen
	atom ?	10.20 more of oxygen
	a) 0 02	h) 3 125 x 10^{-2}
	c) 1.25×10^{-2}	d) 25×10^{-2}
56	The ionic strength of N	a^+ on mixing 100 mI
<i>.</i>	0.1 M NaCl and 100 mL	$0.1 M \text{Na}_{2} \text{SO}_{1} \text{ is}$
	a) 0.2	h) 0.1
	c) 0 3	d)0.075
57	10^{21} molecules are rem	loved from 200 mg of
,,.	CO_{2} The moles of CO_{2}	left are
	a) 2.88 $\times 10^{-3}$	b) 28.8 $\times 10^{-3}$
	c) 288 $\times 10^{-3}$	d) 28.8 $\times 10^3$
58	What is the SL unit for e	electrochemical
	equivalent?	
	a) ls^{-1}	b) IC^{-1}
	c) kgC	d)kgC ^{-1}
59.	The term standard solu	ition is used for the
	solutions whose:	
	a) Normality is known	b) Molarity is known
	c) Strength is known	d)All of these
70.	If 1.2 g of a metal displa	ace 1.12 litre hydrogen
	at normal temperature	and pressure,
	equivalent weight of m	etal would be:
	a) 12	b)24
	c) 1.2 × 11.2	d) 1.2 ÷ 11.2
71.	If the density of methan	nol is 0.8 kg L^{-1} , what is
	its volume needed for r	naking 4 L of its 0.25M
	solution?	
	a) 4 mL	b)8 mL
	c) 40 mL.	d)80 mL
72.	The volume of air need	ed for complete
	combustion of 1 kg car	bon at STP is:
	a) 9333.33 litre	b)933.33 litre
	c) 93.33 litre	d)1866.67 litre
73.	1.0 g of magnesium is b	ournt with $0.56 \text{ g} \text{ O}_2$ in a
	closed vessel. Which re	actant is left in excess
	and how much? (Atom	ic weight, $Mg = 24, 0 =$

b)0₂,0.16 g

74	c) Mg, 0.44 g	d)0 ₂ ,0.28 g
74.	H_3BU_3 IS:	
	a) Monobasic and weal	kb) Monobasic and weak
	Lewis acid	Bronsted acid
	c) Monobasic and	d)Tribasic and weak
	strong Lewis acid	Bronsted acid
75.	If one mole of H_2SO_4 re	eacts with an excess of
	NaOH, how many mole	es of water are formed?
	a) 2	b)1
	c) 3	d)4
76.	Strength of the solution	n is given by:
		S
	a) $S = N \times E$	b) wt. of solute
		volume of solution
	c) $S = M \times \text{mol. wt.}$	d) All of the above
77.	The molality of 1 <i>M</i> sol	lution of NaCl (specific
	gravity 1.0585) g/mL)	is:
	a) 1.0585	b) 1.0
	c) 0.10	d)0.0585
78.	The number of milli eq	uivalent contained in
	0.5 litre of 0.2 <i>N</i> solution	on is:
	a) 0.1	b)100
	c) 0.01	d)1.0
79.	The unit (JPa ⁻¹) is equ	livalent to
	a) m ³	b) cm ⁻³
	c) dm ³	d) None of these
80.	The number of moles	of water present in 90 g
	of a water is:	
	a) 2	b)3
	c) 4	d)5
81.	Equivalent mass of a m	tetal is 12 g mol^{-1} .
	Hence, equivalent mas	s of its oxide is
	a) 24 g mol ^{-1}	b) 28 g mol ^{-1}
	c) 20 g mol ⁻¹	d)34gmol ⁻¹
82.	Rearrange the followin	ig (I to IV) in the order
	of increasing masses a	nd choose the correct
	answer (atomic mass;	0 = 16, Cu = 63, N = 14
)	
	I. 1 molecule of oxyge	n.
	II. 1 atom of nitrogen.	
	III. 1×10^{-10} g molecu	lar weight of oxygen.
	IV. 1×10^{-10} g atomic	weight of copper.
	a) II < I < III< IV	b) IV< III < II < I
	c) II < III < I < IV	d)III < IV < I < II
83.	A solution contains on	e mole of alcohol and
	four moles of water. W	hat are the mole
	fractions of water and	alcohol?
	a) 1/4, 4/1	b)4/1,1/4
	c) 4/5, 1/5	d)1/5,4/5
0.4	, , , ,	<i>y i i i</i>
84.	The correctly reported	answer of the addition

	figures			
	a) Two		h)Three	
	c) Four		d)Five	
85.	The total n	umber of el	ectrons in	18 mL of
00.	water (den	sitv = 1 g n	nL ⁻¹)	10 1112 01
	a) 6023×2	10 ²⁵	h)6023	× 10 ²⁴
	c) 6023×100023	10×10^{23}	d) 6 023	$\times 10^{23}$
86	Vorsono 20	rholating ac	uj 0.023	α chemical
00.	formula ($(0 N_{2})$ If	s chemical
	this composite	$1412(C_212)$	$U_2 Na_{4.11}$	
	$Ca^2 \downarrow$ then	ullu coulu l the reting c	of nume were	
	ca +, then	the rating t	of cholotin	selle expressed
	of $CaCO_3$ DO	bund per g	of chelatin	ig agent is:
	a) 100 mg		b) 163 m	g
0.7	c) 200 mg		d) 263 m	g
87.	A molar sol	ution repre	esents a so	lution of
	molarity eq	ual to:		
	a) 1		b)2	
	c) 3		d)None (of these
88.	To prepare	a standard	solution o	of a substance,
	we use:			
	a) A pipette		b) A bure	ette
20	c) Measurir	ng flask	d) Measu	ring cylinder
89.	An oxide of	sulphur co	ntains 50	% S. what will
	be its empiri	rical formu	la?	
	a) SO		$b)SO_2$	
	c) SO_3		$d)S_2O_3$	
90.	The atomic	weight of a	a metal (M) is 27 and its
	equivalent	weight is 9,	, the formi	ila of its
	chloride wi	ll be:		
	a) MCI		$D M Cl_9$	
01	$C M_3 C I_4$	C 11 ·	a) MCI ₃	
91.	Consider th	le following	g data:	
	Element	Atomic		
	A	12		
	B	35.5		
	A and B con	nbine to fo	rm a new :	substance X. If
	four moles	of B combi	ne with or	e mole of A to
	give one mo	ole of X, th	en the wei	ght of ne mole
	of X is:			
	a) 47.5 g		b)83 g	
	c) 154 g		d)166 g	
92.	A g of a met	tal displace	s V mL of	H ₂ at NTP.
	Equivalent	weight <i>E</i> , o	of metal is:	
	E =		F	
	a) <u>A</u>	×	h)	$A \times 1.008 \times 22$
	wt.of H ₂ di	isplaced	$v = \frac{1}{vol}$	ume of H ₂ displ
	E _H E		م) ۱۱۱ - C	he chows
	E c)	1 ~	ujAli Of t	ine above
	$U = \frac{1}{10000000000000000000000000000000000$	A A	<u> </u>	
	voiun	100112 uis	PP PP	

93.	For 14 g of CO, the wro	ng statement is
	it occupies 2.24 L at	$_{\rm h}$ it corresponds to $1/2$
	NTP	mole of CO
	it corresponds to	it corresponds to
	c) same mole of CO and	$d)3.01 \times 10^{23}$
	nitrogen gas	molecules of CO
94.	The gram molecular we	eight of hydrogen
	peroxide is 34. What is	the unit of gram
	molecular weight?	
	a) g	b) mole
	c) g mol ⁻¹	d)mol g
95.	Molecular weight of tri	basic acid is W. Its
	equivalent weight will	be:
	a) <i>W</i> /2	b) <i>W</i> /3
	c) <i>W</i>	d)3W
96.	The number of water n	nolecules in 1 L of water
	is	
	a) 18	b)18×1000
	c) <i>N</i> _A	d) 55.55 <i>N_A</i>
97.	One g of a mixture of N	a_2CO_3 and NaHCO ₃
	consumes y equivalent	of HCl for complete
	neutralisation. One g of	f the mixture is strongly
	heated, then cooled and	d the residue treated
	with HCl How many eq	uivalent of HCl would
	be required for comple	te neutralization?
	a) 2y equivalent	b) y equivalent
00	c) $3y/4$ equivalent	d) $3y/2$ equivalent
98.	which of the following	sets of compounds
	correctly mustrate the	law of reciprocal
	a) D O DU U O	
	a) $\Gamma_2 \cup_3$, $\Gamma_1 \cap_3$, $\Gamma_2 \cup$	d N O NH H O
00	$C_{\rm J}$ N ₂ O_5 , Nn ₃ , n ₂ O	$u_1 N_2 0, N \Pi_3, \Pi_2 0$
<u>,</u> ,	are mixed in the follow	ving manner 480 mL of
	15 M of I solution wit	h 520 mL of $1.2 M$ of II
	solution The molarity	of final solution is:
	a) 1 20 M	(h) 1 50 M
	c) 1 344 <i>M</i>	d) 2 70 <i>M</i>
100	5 mL of N HCl. 20 mL of	f N/2 H ₂ SO ₄ and 30 mL
100	of $N/3$ HNO ₂ are mixed	together and volume
	made one litre. The nor	mality of the resulting
	solution is:	, ,
	a) N/5	b) <i>N</i> /10
	c) N/20	d) <i>N</i> /40
101	.The number of Na aton	n in 46 g Na (Atomic
	weight of $Na = 23$) is.	<u> </u>
	a) 6.023×10^{23}	b) 2
	c) 1	d) 12.046 × 10^{23}
102	.A molal solution is one	that contains one mole
	of a solute in:	

	a) 1000 g of the solvent	tb) 1000 mL of the solution
	c) One litre of the solvent	d)22.4 litre of the solution
103	$0.7 \text{ g of Na_2CO_2} \cdot xH_2O_2$	were dissolved in water
200	and the volume was ma	ade to 100 mL 20 mL of
	this solution required 1	19.8 mL of $N/10$ HCl for
	complete neutralisation	n The value of r is:
	a) 7	
	c) 2	d) 5
104	A mixture containing 1	$0.0 \mathrm{g}\mathrm{H}_{2}$ and $10.0 \mathrm{g}\mathrm{O}_{2}$ is
101	ignited so that water is	formed according to
	the reaction $2H_{e} + \Omega_{e}$	\rightarrow 2H ₂ O: How much
	water will be formed?	7 21120, 110W much
	$a) 113 \sigma$	b) 50 g
	a) 115 g	d) 200 g
105	If a compound contains	ujzoo g s two ovugen stoms four
105	carbon atoms and num	her of hydrogen atom is
	double of carbon atom	the vapour density of
	it ic.	s, the vapour defisity of
	1(15)	b) 11
	a) 122	DJ44 d)72
100	CJ 132 A motol ovide heathef	$u_J/2$
106.	A metal oxide has the fo	ormula $A_2 O_3$. It can be
	reduced by hydrogen to	o give free metal and
	water. 0.1596 g of this	metal oxide requires
	6 mg of nydrogen for co	omplete reduction.
	What is the atomic wei	ght of metal?
	a) 52.3	bJ57.3
405	c) 55.8	d)59.3
107.	.5.6 litre of oxygen at N	I'P is equivalent to:
	a) 1 mole	b) $1/2$ mole
100	c) 1/4 mole	d)1/8 mole
108.	The number of mole of	solute per kg of solvent
	is called:	
	a) Mole fraction of	b) Normality
	solute	
100	c) Molarity	d) Molality
109.	If 20 g of $CaCO_3$ is treat	ted with 100 mL of 20%
	<i>HCl</i> solution, the amou	nt of CO_2 produced is
	a) 22.4 L	b) 8.80 g
	c) 4.40 g	d)2.24 L
110	.The oxide of an elemen	t contains 67.67% of
	oxygen. Equivalent wei	ght of the element is
	a) 2.46 g	b) 3.82 g
	c) 4.36 g	d) 4.96 g
111.	The oxide of a metal co.	ntains 60 % of the
	metal. What will be the	percentage of bromine
	in the bromide of the m	netal, if the valency of
	the metal is the same in	n both the oxide and the
	bromide?	
	a)≈ 87	b)≈ 70

c) ≈ 77	d)≈ 93
112. How much of $0.1 M H_2$	SO_{A} solution is required
to neutralize 50 mL of	0.2 <i>M</i> NaOH solution?
a) 0.50 mL	b) 50 mL
c) 100 mL	d) 5.0 mL
113 The volume of ovvgen	required for complete
ovidation of 2.0 litre m	ethane at NTP is
2 12 25 litro	b) A litro
a) 12.25 http://doi.org/10.1000	d) 2 litro
114 Mark the conversion f	uj 5 litte
114. Mark the conversion a	
correct.	b) 1 Litra -10^{-3} m ³
a) 1 mcn = 254 cm	$D J I Litre = 10^{-6} \text{m}^3$
c) $1 \text{ m} = 3.937 \text{ inches}$	d) $\begin{bmatrix} 1 & atm \\ 1 & atm \\ 1 & atm \\ attm \\ atttm \\ atttm \\ attm \\ attttm \\ atttm \\ at$
	$^{2} = 101325 \times 10^{3} \text{ Pa}$
115.One mole electron mea	ans:
a) N electrons	b) 6.023×10^{23}
	electrons
c) 0.55 mg electrons	d)All of these
116.The gravimetric comp	osition of water as H : O
is:	
a) 1 : 1	b)1:2
c) 1 : 8	d)1:16
117. The number of atoms i	in 0.1 mol of a triatomic
gas is:	
$(N_A = 6.02 \times 10^{23} \text{ mo})$	l ⁻¹)
a) 6.026 $\times 10^{23}$	b) 1.806 $\times 10^{23}$
c) 3.600×10^{23}	d) 1.80 $\times 10^{23}$
118.What is the unit of viso	cosity?
a) Nm^{-1}	b) Nsm ⁻²
c) kg s ^{-1}	d) Kg s ²
119.If 20 mL of 0.4 N Na	aOH solution completely
neutralizes 40 mL	of a dibasic acid, the
molarity of the acid so	lution is:
a) 0.1 <i>M</i>	b) 0.2 <i>M</i>
c) 0.3 <i>M</i>	d) 0.4 <i>M</i>
120.Mass of the solution of	1 molal glucose solution
to get 0.2 mole of gluce	ose is
a) 200 g	b) 300 g
c) 236 g	d) 108 g
121 The dehydration yield	of cyclohexanol to
cyclohexene is 75% W	
cyclonexene is 7070.	/hat would be the vield
if 100 g of cyclohexand	/hat would be the yield,
if 100 g of cyclohexand	/hat would be the yield, bl is dehydrated?
if 100 g of cyclohexand a) 61.7 g c) 615 g	/hat would be the yield, bl is dehydrated? b) 16.5 g d) 615 g
if 100 g of cyclohexand a) 61.7 g c) 6.15 g	/hat would be the yield, ol is dehydrated? b) 16.5 g d) 615 g
if 100 g of cyclohexand a) 61.7 g c) 6.15 g 122.If 250 mL of a solution the normality of the so	 /hat would be the yield, b) is dehydrated? b) 16.5 g d) 615 g contains 2.7 g of H₃PO₄,
if 100 g of cyclohexand a) 61.7 g c) 6.15 g 122.If 250 mL of a solution the normality of the so	/hat would be the yield, ol is dehydrated? b) 16.5 g d) 615 g contains 2.7 g of H ₃ PO ₄ , olution is: b) 0.33
if 100 g of cyclohexand a) 61.7 g c) 6.15 g 122.If 250 mL of a solution the normality of the so a) 4.0 c) 0.4	 /hat would be the yield, b) 16.5 g d) 615 g contains 2.7 g of H₃PO₄, b) 0.33 d) 0.1
if 100 g of cyclohexand a) 61.7 g c) 6.15 g 122.If 250 mL of a solution the normality of the so a) 4.0 c) 0.4	That would be the yield, b) is dehydrated? b) 16.5 g d) 615 g contains 2.7 g of H_3PO_4 , blution is: b) 0.33 d) 0.1
if 100 g of cyclohexand a) 61.7 g c) 6.15 g 122.If 250 mL of a solution the normality of the so a) 4.0 c) 0.4 123.The volume of 0.25 <i>M</i>	That would be the yield, b) is dehydrated? b) 16.5 g d) 615 g contains 2.7 g of H_3PO_4 , blution is: b) 0.33 d) 0.1 H_3PO_4 required to

	a) 1.32 mL	b) 13.2 mL
	c) 26.4 mL	d) 2.0 mL
124.	How many g of glucose	be dissolved to make
	one litre solution of 10	% (wt./vol.) glucose?
	a) 10 g	b) 180 g
	c) 100 g	d) 1.8 g
125.	14 g of element X comb	oine with 16 g of oxygen.
	On the basis of this info	ormation, which of the
	followings is a correct s	statement?
	The element X could	The element X could
	have an atomic	have an atomic
	weight of 7 and its	weight of 14 and its
	oxide is XO	oxide formula is X_20
	The element X could	The element X could
	c) have an atomic	d) have an atomic
	weight of 7 and its	weight of 14 and its
100	oxide is $X_2 O$	oxide is XO_2
126.	At a given temperature	, 1 mole O_2 occupy
	200m° of volume. Thus	s, volume occupied by 1
	equivalent of O_2 is	h) 10 dm ³
	a) 2 Edm ³	d) $E 0 dm^3$
127	A sample of pure (u (3	18 g heated in a
147.	stream of oxygen for so	me time gains in weight
	with the formation of h	lack oxide of conner
	(CuO). The final weight	is 3.92 g. What per cent
	of copper remains uno	xidised?
	a) ≈ 6.5	b)≈ 6.9
	c) ≈ 7.6	d)≈ 7.9
128.	To make 0.01 mole, wh	ich of the following has
	maximum mass?	
	a) Sodium bicarbonate	b) Sodium carbonate
	c) Sodium sulphate	d)Sodium oxalate
129.	In the reaction, $N_2 + 3$	$H_2 \rightarrow 2NH_3$, the ratio of
	volumes of nitrogen, hy	drogen and ammonia is
	1: 3: 2. These ratio illus	trate the law of
	a) constant properties	b) Gay-Lussac
	c) multiple proportions	d)reciprocal
		proportions
130.	A gas is found to have t	he formula $(CO)_x$. Its
	VD is 70. The value of 2	r must be:
	a) 7	b)4
404	c) 5	d)6
131.	Which one of the follow	ving will have largest
	number of atoms?	$1 \cdot 1 = N_{2}$
	a) 1 g Au (s) a) 1 g Li (a)	$ \begin{array}{c} \text{b) I g Na (s)} \\ \text{d) I g of Cl (z)} \end{array} $
127	LJ I g LI (S) The system that contain	$u_{j1}g_{01}U_{2}(g)$
132.	number of atoms is	
	a) 4.25 g of NH	h 8 σ of 0
	aj 7.25 g UL 19113	0 J 0 Z 01 0 2

c) 2 g of H_2	d)4 g of He					
133.Which term is to be o	correctly used for					
expressing concentration of electrolytes in						
solution?						
a) Molarity	h) Normality					
c) Formality	d) None of these					
134 The law of definite n	ronortions is not					
annlicable to nitroge	n ovide because					
applicable to introge	h) Nitrogon molocular					
weight is not	woight is variable					
constant	weight is variable					
c) Nitrogen equivale	nt d)Ovugan atomic					
woight is variable	woight is variable					
125 The maximum amou	weight is variable					
an miwing 20 mL of (In or $DaSO_4$ precipitated					
	D.5 M Baci ₂ with 20 mL of					
$1 M H_2 SU_4 IS:$	b) 0 5					
a) 0.25 mole	b) 0.5 mole					
c) 1 mole	d) 0.01 mole					
136.Sulphur forms the ch	florides S_2Cl_2 and SCl_2 .					
The equivalent mass	of sulphur in SCl_2 is 16.					
The equivalent mass	of sulphur S_2Cl_2 is:					
a) 8	b)16					
c) 64	d)32					
137. For preparing $M/10$	solution of H ₂ SO ₄ in one					
litre we need H ₂ SO ₄ :						
a) 9.8 g	b) 49.0 g					
c) 4.8 g	d)0.09 g					
138.5.85 g of NaCl are dis	ssolved in 90 g of water.					
The mole fraction of	NaCl is:					
a) 0.1	b)0.01					
c) 0.2	d)0.0196					
139. The normality of one	e molar sodium carbonate					
solution is:						
a) 2	b)1					
c) 0.5	d) 1.5					
140. The molarity of pure	water is:					
a) 55.6	b) 50					
c) 100	d)18					
141.0.5 mole of H_2SO_4 is	mixed with 0.2 mole of					
Ca(OH) ₂ . The maxim	um number of mole of					
CaSO ₄ formed is:						
a) 0.2	b) 0.5					
c) 0.4	d) 1.5					
142. The percentage of ni	trogen in urea is about:					
a) 38.4	b)46.6					
c) 59.1	d)61.3					
143.Which property of a	n element is not variable?					
a) Valence	b)At. wt.					
c) Ea. wt.	d)None of these					
144.Concentration of HC	is 10 N. 100 mL of 1 N					
HCl can be obtained	by diluting:					
	- ,					

	a) 10 mL of conc. HCl	b) 20 mL of conc. HCl to
	to 100 mL	100 mL
	c) 100 mL of conc. HCl	d)100 mL of conc. HCl
	to 200 mL	to 100 mL
145	.What is the SI unit of d	ensity?
	a) g cm ^{-3}	b) $g m^{-3}$
	c) kg m ^{-3}	d) kg cm ⁻³
146	.x g of Ag was dissolved	l in HNO ₃ and the
	solution was treated w	ith excess of NaCl when
	2.87 g of <i>AgCl</i> was pred	cipitated. The value of <i>x</i>
	is	
	a) 1.08 g	b) 2.16 g
	c) 2.70 g	d)1.62 g
147	.The molecular mass of	a compound (X) if its
	3.0115×10^9 molecule	s weigh 1.0×10^{-12} g is
	a) 150 g	h) 200 g
	c) 630 g	d) 500 g
148	The vapour density of a	volatile chloride of a
110	metal is 95 and the sne	cific heat of the metal is
	$0.12 \text{ col}/\sigma$ The equival	ont woight of the motal
	will be	ent weight of the metal
	$a) \in 0$	h) 12 2
	a) 19.6	d) 24 5
110	In a closed vessel 5 me	$u_{J}^{24.3}$
149	$A = \frac{1}{2} $ $A = $	the following manner
	$D_2(g)$ are reacted in $A_1(g) + 2P_2(g) \rightarrow 2AI$	(\mathbf{r})
	$A_2(g) + 3D_2(g) \rightarrow 2AI$ What is the total numb	$P_3(g)$
	what is the total humb	r at the and of the
	reaction?	at the end of the
	a) $22/3$ mol	b)7/3 mol
	c) $14/3$ mol	d)8/3 mol
150	.The solution having low	vest molar
	concentration is:	
	a) 1.0 <i>N</i> HCl	b) $0.4 N H_2 SO_4$
	c) $0.1 N Na_2 CO_2$	d) None of these
151	The number of moles o	f oxygen in one litre of
	air containing 21% oxy	gen by volume, in
	standard conditions, is	80
	a) 0.186 mol	h 0.21 mol
	c) 2.10 mol	d) 0.0093 mol
152	Which symbol replaces	the unit of atomic
102	mass amu?	the unit of atomic
	a) ii	h) A
	c) M	d)n
152	The number of mole nr	asont in 2 litro of 0 5
133		esent in 2 intre of 0.5
	m NaUH 15: a) 2	b) 1
	aj 4 c) 0 1	9)02 0)1
1 🗆 4	$U_{J}U_{J}I_{J}$	uju.J vrida contain 25 5 a af
104	. / 4.5 g ui a metamic chio	on the contain 35.5 g of
	chlorine. The equivaler	it weight of the metal is

a) 19.5	b)35.5				
c) 39.0	d)78.0				
155.Which contains greatest number of oxygen					
atoms?					
a) 1 g of 0	b) 1 g of 0 ₂				
c) 1 σ of 0	d)All have the same				
c_{j} i g of c_{3}	number of atoms				
156.Which of the following	g formulae expresses the				
law of equivalent corr	ectly?				
$m_1 E_2$					
a) $\frac{1}{m_2} = \frac{1}{E_1}$	$b)E_1E_2 = m_1m_2$				
	$(m_1 + m_2)$				
c) $m_1 E_2 = E_1 m_2$	$d) = (E_1 + E_2)$				
157.510 mg of a liquid on	vaporization in Victor				
mever's annaratus dis	contacted in the following set 67.2 cm^3 of air at				
(STP) The molecular	weight of the liquid is:				
a) 120	h) 17				
a) 130	d) 1700				
	uji/00				
158.A divalent metal has 1	2 equivalent weight. The				
molecular weight of it	s oxide is				
a) 16 g	b) 32 g				
c) 40 g	d)52 g				
159.0ne mole of P ₄ molecu	iles contain:				
a) 1 molecule	b)4 molecules				
1					
$\frac{1}{2} \times 6022$					
c) $\frac{1}{4} \times 6.022$	d)24.088 × 10^{23} atoms				
c) $\frac{1}{4} \times 6.022$ × 10 ²³ atoms	d) 24.088 × 10 ²³ atoms				
c) $\frac{1}{4} \times 6.022$ × 10 ²³ atoms 160.Number of mole of 1 r	d) 24.088 \times 10 ²³ atoms n ³ gas at NTP are:				
c) $\frac{1}{4} \times 6.022$ × 10 ²³ atoms 160.Number of mole of 1 r a) 44.6	d) 24.088 × 10 ²³ atoms n ³ gas at NTP are: b) 40.6				
c) $\frac{1}{4} \times 6.022$ × 10 ²³ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6	d) 24.088 × 10 ²³ atoms n ³ gas at NTP are: b) 40.6 d) 48.6				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is :				
c) $\frac{1}{4} \times 6.022$ × 10 ²³ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10 ²³	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23}				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 $\times 10^{23}$ c) 0.6022 $\times 10^{23}$	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23}				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 $\times 10^{23}$ c) 0.6022 $\times 10^{23}$ 162.A sample of a mixture	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i>				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 $\times 10^{23}$ c) 0.6022 $\times 10^{23}$ 162.A sample of a mixture weighing 4.22 g was t	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02×10^{23} c) 0.6022×10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> . This	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₂ is then heated				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02×10^{23} c) 0.6022×10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively cor	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated werted into 0.959 g of				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02×10^{23} c) 0.6022×10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> Calculate the part	d) 24.088 × 10^{23} atoms m ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated everted into 0.959 g of contage of <i>CaCl</i> in the				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02×10^{23} c) 0.6022×10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated hverted into 0.959 g of reentage of <i>CaCl</i> ₂ in the				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10^{23} c) 0.6022 × 10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture.	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated nverted into 0.959 g of reentage of <i>CaCl</i> ₂ in the				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02×10^{23} c) 0.6022×10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> =	d) 24.088 × 10 ²³ atoms m ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10 ²³ d) 60.22 × 10 ²³ of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated nverted into 0.959 g of rcentage of <i>CaCl</i> ₂ in the 40, $O = 16, C = 12$ and				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10^{23} c) 0.6022 × 10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5)	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated hverted into 0.959 g of reentage of <i>CaCl</i> ₂ in the 40, <i>O</i> = 16, <i>C</i> = 12 and				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10^{23} c) 0.6022 × 10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5) a) 31.5%	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated hverted into 0.959 g of reentage of <i>CaCl</i> ₂ in the 40, <i>O</i> = 16, <i>C</i> = 12 and b) 21.5%				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10 ²³ c) 0.6022 × 10 ²³ 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5) a) 31.5% c) 45.04%	d) 24.088 × 10^{23} atoms m ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated hverted into 0.959 g of reentage of <i>CaCl</i> ₂ in the 40, <i>O</i> = 16, <i>C</i> = 12 and b) 21.5% d) 68.48%				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10^{23} c) 0.6022 × 10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively cor <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5) a) 31.5% c) 45.04% 163.Amount of oxygen req	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated overted into 0.959 g of reentage of <i>CaCl</i> ₂ in the 40, <i>O</i> = 16, <i>C</i> = 12 and b) 21.5% d) 68.48% puired for combustion of				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10^{23} c) 0.6022 × 10^{23} 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5) a) 31.5% c) 45.04% 163.Amount of oxygen req 1 kg of a mixture of bu	d) 24.088 × 10 ²³ atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10 ²³ d) 60.22 × 10 ²³ of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated hverted into 0.959 g of reentage of <i>CaCl</i> ₂ in the 40, $O = 16, C = 12$ and b) 21.5% d) 68.48% puired for combustion of itane and isobutane is:				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10 ²³ c) 0.6022 × 10 ²³ 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5) a) 31.5% c) 45.04% 163.Amount of oxygen req 1 kg of a mixture of bu a) 1.8 kg	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated hverted into 0.959 g of reentage of <i>CaCl</i> ₂ in the 40, <i>O</i> = 16, <i>C</i> = 12 and b) 21.5% d) 68.48% puired for combustion of itane and isobutane is: b) 2.7 kg				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10 ²³ c) 0.6022 × 10 ²³ 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively cor <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5) a) 31.5% c) 45.04% 163.Amount of oxygen req 1 kg of a mixture of bu a) 1.8 kg c) 4.5 kg	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated nverted into 0.959 g of rcentage of <i>CaCl</i> ₂ in the 40, <i>O</i> = 16, <i>C</i> = 12 and b) 21.5% d) 68.48% puired for combustion of itane and isobutane is: b) 2.7 kg d) 3.58 kg				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10 ²³ c) 0.6022 × 10 ²³ 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5) a) 31.5% c) 45.04% 163.Amount of oxygen req 1 kg of a mixture of bu a) 1.8 kg c) 4.5 kg 164.On analysis a certain of	d) 24.088 × 10 ²³ atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10 ²³ d) 60.22 × 10 ²³ of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated hverted into 0.959 g of reentage of <i>CaCl</i> ₂ in the 40, $O = 16, C = 12$ and b) 21.5% d) 68.48% puired for combustion of itane and isobutane is: b) 2.7 kg d) 3.58 kg compound was found to				
c) $\frac{1}{4} \times 6.022$ $\times 10^{23}$ atoms 160.Number of mole of 1 r a) 44.6 c) 42.6 161.Number of electrons i a) 6.02 × 10 ²³ c) 0.6022 × 10 ²³ 162.A sample of a mixture weighing 4.22 g was t the <i>Ca</i> as <i>CaCO</i> ₃ . This and quantitatively con <i>CaO</i> . Calculate the per mixture. (Atomic mass of <i>Ca</i> = <i>Cl</i> = 35.5) a) 31.5% c) 45.04% 163.Amount of oxygen req 1 kg of a mixture of bu a) 1.8 kg c) 4.5 kg 164.On analysis a certain of contain iodine and oxygen req	d) 24.088 × 10^{23} atoms n ³ gas at NTP are: b) 40.6 d) 48.6 n 1.8 mL of H ₂ O is : b) 3.011 × 10^{23} d) 60.22 × 10^{23} of <i>CaCl</i> ₂ and <i>NaCl</i> reated to precipitate all <i>CaCO</i> ₃ is then heated overted into 0.959 g of reentage of <i>CaCl</i> ₂ in the 40, <i>O</i> = 16, <i>C</i> = 12 and b) 21.5% d) 68.48% puired for combustion of itane and isobutane is: b) 2.7 kg d) 3.58 kg compound was found to ygen in the ration 254 g				

of iodine is 127 and that of oxygen is 16. Which

is the formula of the compound? a) IO b) I_20 $d I_2 O_5$ c) $I_5 O_2$ 165. An oxide of iodine (I = 127) contains 25.4 g of iodine for 8 g of oxygen. Its formula could be: b) I_20 a) $I_2 O_3$ c) $I_2 O_5$ $d I_2 O_7$ 166.On adding 20 mL of 0.1 N NaOH solution to 10 mL of 0.1 *N* HCl, the resulting solution will: a) Turn blue litmus red b) Turn phenolphthalein solution pink c) Turn methyl orange d) Will have no effect on red or blue litmus red paper 167. Weight of H_2O in 1000 kg $CuSO_4 \cdot 5H_2O$ is: b) 36.05 kg a) 360.5 kg c) 3605 kg d) 3.605 g 168.1000 g aqueous solution of CaCO₃ contains 10 g of calcium carbonate. Concentration of solution is: a) 10 ppm b)100 ppm c) 1000 ppm d) 10000 ppm 169. The number of sodium atoms in 2 moles of sodium ferrocyanide is a) 12×10^{23} b) 26×10^{23} c) 34×10^{23} d) 48×10^{23} 170. Number of atoms of He in 100 u of He (atomic weight of He is 4) are a) 25 atom b)100 atom d) $100 \times 6 \times 10^{-23}$ c) 50 atom atom 171. When 22.4 L of $H_2(g)$ is mixed with 11.2 L of $Cl_2(g)$, each at STP, the moles of HCl(g) formed is equal to b) 2 moles of HCl (g) a) 1 mole of HCl (g) c) 0.5 mole of HCl (g) d) 1.5 moles of HCl (g) 172.9.8 g of H_2SO_4 is present in 2 litre of a solution. The molarity of the solution is: a) 0.1 M b) 0.05 M c) 0.01 *M* d) 0.2 M 173.A vogadro's number is the number of molecules present in: a) 22.4 litre of a gas of b) 1 mole of a NTP substance c) G mol. wt. of a d) All of the above substance 174.18.72 g of a substance X occupies 1.81 cm³. What will be its density measured in correct significant figures?

a) 10.3 g/cm ³	b)10.34 g/cm ³						
c) 10.4 g/cm ³	d)10.3425 g/cm ³						
175.A compound was fo	und to contain nitrogen						
and oxygen in the ra	atio, nitrogen 28 g and 80 g						
of oxygen. The form	of oxygen. The formula of the compound is:						
a) NO	b) $N_2 O_3$						
$c) N_2 O_{F}$	d N ₂ O ₄						
176. The ratio of mole fra	action of a solute and a						
solvent in a binary s	solution is:						
a) Ratio of their wt.	b)One						
c) Ratio of their mol	e d)Zero						
177. The vapour density	of a gas is 11.2. The volume						
occunied by one gra	im of the gas at STP is						
a) 1 0 I	h) 11 2 I						
c) 22 4 I	d) None of these						
178 The empirical form	all of a compound is CH. Its						
molocular weight is	79 The molecular formula						
of the compound wi							
a) $C_2 \Pi_2$	UJC3П3 d)С Ц						
$C_J C_2 \Pi_4$	$u_{J}U_{2}\Pi_{6}$						
1/9. The weight of 112 m	hL of oxygen at NTP IS						
a) 0.64 g O_2	$D J 0.96 g O_2$						
$CJ U.32 g U_2$	$a_{\rm J}$ 0.16 g U_2						
180.A jug contains 5 L of	f mlik. Calculate the volume						
of milk in m^3 .							
a) 5×10^{-3}	b) 5×10^{5}						
c) 5 × 10000	d) 5 × 10 ³						
181. The normality of 19	% (wt./vol.)H ₂ SO ₄ is nearly:						
a) 0.02	b) 0.2						
c) 0.1	d)1						
182.If 250 mL of a soluti	on contains 24.5 g H_2SO_4 ,						
the molarity and no	rmality respectively are:						
a) 1 <i>M</i> , 2 <i>N</i>	b) 1 <i>M</i> , 0.5 <i>N</i>						
c) 0.5 <i>M</i> , 1 <i>N</i>	d) 2 <i>M</i> , 1 <i>N</i>						
183.The number of aton	ns in <i>n</i> moles of gas can be						
given by:							
$n \times \text{Av. no.} \times$	$n \times Av.$ no.						
atomicity	atomicity						
c) <u>Av. no.</u> × atomic	city_d)None of these						
n 104 Th							
184. The concentration of	of solution containing 0.5						
mole H_3PO_4 dissolv	ed in 500 g water:						
a) 1 m	b)1 <i>M</i>						
c) 1 <i>N</i>	d) 0.5 <i>M</i>						
185. The number of gran	n atoms of oxygen in 6.02 \times						
10 ²⁴ CO molecules i	S						
a) 1	b) 0.5						
c) 5	d)10						
186.A measured temper	ature on Fahrenheit scale						
is 200°F. What will	this reading be on Celsius						
scale?							

a) 40°C	b)94°C
c) 93.3°C	d)30°C
187.To neutralise comple	telv 20 ML of 0.1 M
aqueous solution of	of phosphorous acid
(H_2PO_2) , the volume	of 0.1 <i>M</i> aqueous KOH
solution required is	
a) 60 mL	h) 20 mJ.
c) 40 mL	d)10 mI
199 The number of stome r	up 10 III
colled:	inesent in a molecule is
a) Atomicity	h) Molocularity
a) Poison's ratio	d) None of these
190 0 52 g of dibasic acid re	u_j None of these u_j and u_j of $0.1 N$
NaOH for complete nor	tralization The
aquivalent weight of ac	id in
equivalent weight of at	10 IS:
a) 20	0J52
CJ 104 100 A motol contrine	u)150
190.A metal oxide contains	20% oxygen by weight.
Equivalent weight of m	letal is
a) 32	b)40
c) 64	d)72
191. The weight of 11.2 litre	e of any gas at STP
represents its:	
a) Gram molecular	b)Gram equivalent
weight	weight
c) Gram atomic weight	d)Vapour density
192.How many atoms are c	ontained in a mole of
$Ca(OH)_2?$	
$30 \times 6.02 \times 10^{23}$	$5 \times 6.02 \times 10^{23}$
atom/mol	atom/mol
$3 \times 6.02 \times 10^{23}$	d)None of the above
^{c)} atom/mol	
193.The molality of 15% (v	vt./vol.) solution of
H ₂ SO ₄ of density 1.1 g/	cm ³ is approximately:
a) 1.2	b) 1.4
c) 1.8	d)1.6
194. Few quantities with the	eir units are given
below. Mark the unit w	hich is not correctly
converted.	
a) 1 km = 10^6 mm	b) $1mg = 10^{-6} kg$
c) $1mg = 10^{10}ng$	d) 1 mL = 10^{-3} dm ³
195.10 mL of gaseous hydr	ocarbon on combustion
gives 40 mL of $CO_2(g)$	and 50 mL of H ₂ O (vap).
The hydrocarbon is:	
a) $C_4 H_5$	b) C_8H_{10}
c) $C_4 H_8$	d) C_4H_{10}
196.Which of the following	is correct?
Mea. = $N \times V_{in mI}$ =	
	Eq. = $N \times V_{in mI}$ =
$a_{J} = \frac{WL}{V} \sim 1000$	Eq. = $N \times V_{\text{in mL}}$ = b) <u>wt.</u>
$\frac{\text{aJ}}{\text{Eq.wt.}} \times 1000$	Eq. = $N \times V_{\text{in mL}}$ = b) $\frac{\text{wt.}}{\text{Eq.wt.}}$

milli equivalent of reactants react to give same eq. or Meq. of products

- 197.A solution of known normality is diluted to two times. Which of the following changes during dilution?
 - a) Equivalent of solute b) Moles of solute
 - c) Volume of 1 g d) None of the above solution
- 198. The correct conversion of the following into basic units.
 - (i) 28.7pm
 - (ii) 15.15µs
 - (iii) 25365mg
 - (i) → 28.7 × 10^{-11} m, (ii) → a) 1515 × 10^{-6} s,
 - $(iii) \rightarrow 2.5365 \times 10^{-3} \text{ kg}$
- (i) → 2.87 × 10^{-11} m, (ii) → b) 1515 × 10^{-5} s, (iii) → 2.5365 × 10^{-2} kg

 $\begin{array}{ll} (i) \rightarrow 2.87 \times & (i) \rightarrow 2.87 \times \\ 10^{-10} \text{ m} (ii) \rightarrow & 10^{-10} \text{ m} (ii) \rightarrow \\ \text{c)} 1515 \times 10^{-5} \text{ s,} & \text{d)} 1515 \times 10^{-6} \text{ s,} \\ (iii) \rightarrow 2.5365 \times & (iii) \rightarrow 2.5365 \times \\ 10^{-3} \text{ kg} & 10^{-2} \text{ kg} \end{array}$

199. Number of g-atom of S present in 49 g $\rm H_2SO_4$ are:

- a) 0.5 b) 1 c) 0.2 d) 0.3
- 200.Excess of carbon dioxide is passed through 50 mL of 0.5 m calcium hydroxide solution. After completion of the reaction, the solution was evaporated to dryness. The solid calcium carbonate was completely neutralised with 0.1 N hydrochloric acid. The volume of hydrochloric acid required is (atomic mass of calcium = 40).

a) 300 cm³ c) 500 cm³

b) 200 cm³ d) 400 cm³

N.B.Navale

Date: 01.04.2025Time: 03:00:00Marks: 200

SOME BASIC CONCEPTS OF CHEMISTRY, 1. SOME BASIC CONCEPTS OF CHEMISTRY

: ANSWER KEY :															
1)	а	2)	а	3)	С	4)	b	105)	b	106)	С	107)	С	108)	d
5)	С	6)	С	7)	а	8)	b	109)	b	110)	b	111)	а	112)	b
9)	С	10)	d	11)	С	12)	а	113)	b	114)	С	115)	d	116)	С
13)	С	14)	b	15)	а	16)	С	117)	b	118)	b	119)	а	120)	С
17)	С	18)	а	19)	а	20)	а	121)	а	122)	b	123)	d	124)	С
21)	b	22)	а	23)	b	24)	а	125)	С	126)	d	127)	С	128)	С
25)	С	26)	а	27)	d	28)	d	129)	b	130)	С	131)	С	132)	С
29)	b	30)	С	31)	d	32)	b	133)	С	134)	С	135)	d	136)	d
33)	а	34)	b	35)	b	36)	b	137)	а	138)	d	139)	а	140)	а
37)	b	38)	а	39)	b	40)	а	141)	а	142)	b	143)	b	144)	а
41)	d	42)	С	43)	С	44)	а	145)	С	146)	b	147)	b	148)	b
45)	b	46)	d	47)	а	48)	а	149)	а	150)	С	151)	d	152)	а
49)	b	50)	d	51)	С	52)	С	153)	b	154)	С	155)	d	156)	С
53)	а	54)	а	55)	С	56)	а	157)	С	158)	С	159)	d	160)	а
57)	С	58)	С	59)	b	60)	b	161)	a	162)	С	163)	d	164)	d
61)	С	62)	С	63)	b	64)	d	165)	С	166)	b	167)	а	168)	d
65)	b	66)	d	67)	а	68)	d	169)	d	170)	а	171)	а	172)	b
69)	d	70)	а	71)	с	72)	a	173)	d	174)	b	175)	С	176)	С
73)	а	74)	а	75)	a	76)	d	177)	а	178)	d	179)	d	180)	а
77)	b	78)	b	79)	a	80)	d	181)	b	182)	а	183)	а	184)	а
81)	С	82)	а	83)	С	84)	b	185)	d	186)	С	187)	С	188)	а
85)	b	86)	d	87)	a	88)	С	189)	b	190)	а	191)	d	192)	b
89)	b	90)	d	91)	c	92)	d	193)	d	194)	С	195)	d	196)	d
93)	а	94)	с	95)	b	96)	d	197)	d	198)	b	199)	а	200)	С
97)	b	98)	a	99)	С	100)	d								
101)	d	102)	a	103)	С	104)	а								
								I							

TEST ID: 67 CHEMISTRY

N.B.Navale

Date : 01.04.2025 Time : 03:00:00 Marks : 200

SOME BASIC CONCEPTS OF CHEMISTRY, 1. SOME BASIC CONCEPTS OF CHEMISTRY

: HINTS AND SOLUTIONS : **Single Correct Answer Type** 7 (a) 4 g He = N atoms.(a) 1 From Avogadro's law, 8 (b) 6.023×10^{23} atoms or Avogadro's number of an Metal = 5.00 gelement contains mass = Atomic mass of the Metal Oxide = 9.44 g element Oxygen combined = 4.44 g $: 3.011 \times 10^{22}$ atoms of an element weight 1.15 g 4.44 g of oxygen combined with = 5.00 g metal $\therefore 6.023 \times 10^{23}$ atoms of an element will weight \therefore 8 g oxygen combined with $=\frac{5.00}{4.44} \times 8$ g metal $=\frac{1.15\times6.023\times10^{23}}{3.011\times10^{22}}=23$ $= 9.00 \, g$ 9 (c) Hence, atomic mass of the element is 23. $SCl_2 \equiv 2Cl, 2Cl \equiv S$ 2 (a) $1Cl = \frac{s}{2} = 16$ Meq. of conc. $AgNO_3 = Meq. of dil. AgNO_3$ \therefore Atomic mass of sulphur = 32 $\frac{40 \times 10^{-3}}{170} \times 1 = \frac{16 \times 10^{-3}}{170} \times V,$ i.e., $S_2Cl_2 \equiv 2 S \equiv 2Cl$ ÷ $2Cl \equiv 64 \text{ g S}$ 3 (c) 1Cl = 32 g SMass of solute = 120 g 10 (d) Mass of water = 1000 g 1 mole $NH_3 \equiv 10 N$ electron $\frac{11.2}{22.4}$ mole NH₃ $\equiv 10 \times N \times \frac{1}{2} = 3.01 \times$ Mass of solution = 1120 g \therefore Volume of solution $\left(\frac{m}{d}\right) = \frac{1120}{1.15}$ mL 10²⁴ electron $\begin{array}{l} \text{Milli mole} = M \times \text{V}_{\text{in mL}} \\ \frac{120}{60} \times 1000 = M \times \frac{1120}{1.15} \end{array}$ 11 (c) Meq. of $H_2S = Meq.$ of Cu^{2+} $\frac{w}{34/2} \times 1000 = \frac{63.5}{63.5/2} \times 1000$ 4 **(b)** 12 (a) In $Mg_3(PO_4)_2$; 1 moles of 0-atoms are present in Number of atoms = number of molecules \times 1 mole of $Mg_3(PO_4)_2$ specific atoms in molecules Hence, 0.25 mole of O-atom are contained In 12g $^{24}_{12}$ Mg number of atom = $\frac{12}{24} \times 6.022 \times$ $=\frac{1}{8} \times 0.25$ $10^{23} \times 1$ $= 3.125 \times 10^{-2}$ $= 3.011 \times$ 5 (c) 10²³atoms 100 g sample $\equiv 0.33$ g iron 13 (c) \therefore 67200 g \equiv 221.8 g iron VD of substance = 4 (when VD of $CH_4 = 1$) : Number of iron atoms per molecule of ::VD of substance = 8×4 (when VD of CH₄ = 8) haemoglobin \therefore mol. wt. of substance = $32 \times 2 = 64$ $=\frac{221.8}{56}\approx 4.$ 14 **(b)** mM of AgNO₃ = $0.1 \times V$ 6 (c) mM of NaCl = $0.2 \times V$ At STP, 22400 cm³ of $CH_4 = 12 + 4 = 16 \text{ g}$ $\therefore mM \text{ of } NO_3^- = 0.1 \times V \text{ and total } V = 2V$ At STP, 112 cm³ of CH₄ = $\frac{16 \times 112}{22400}$ = 0.08 g

TEST ID: 67 CHEMISTRY

According to the law of conservation of mass,
Total mass of reactants = Total mass of products
Amount of Fe₂O₃ is decided by limiting reagent.
16 (c)
Stoichiometry represents mole ratio or volume
ratio of reactants and products.
17 (c)
The ratio of given masses will be governed by law
of reciprocal proportions.
18 (a)
2 mole of H₂O = 36 g H₂O = 2N molecules .
19 (a)

$$M = \frac{171}{342 \times 1} = 0.5$$

20 (a)
 $M = \frac{171}{342 \times 1} = 0.5$
20 (a)
 $m = \frac{171}{2}$ Meq. of Na₂CO₃ = 2.5 × 0.1 × 2 = 0.5
For methyl orange:
 $\frac{1}{2}$ Meq. of Na₂CO₃ = 2.5 × 0.1 × 2 = 0.5
For methyl orange:
 $\frac{1}{2}$ Meq. of Na₂CO₃ = 2.5 × 0.1 × 2 = 0.5
For methyl orange:
 $\frac{1}{2}$ Meq. of Na₂CO₃ = 0.5 and Meq. of Na₂CO₃
 $= 1.0$
 $\therefore \frac{W}{84} \times 1000 = 0.5$
 $\frac{W}{100/2} \times 1000 = 100$
 $\therefore \frac{W}{84} \times 1000 = 0.5$
 $\frac{W}{100/2} \times 1000 = 100$
 $\therefore \frac{W}{84} \times 1000 = 0.5$
 $\frac{W}{100/2} \times 1000 = 100$
 $\therefore \frac{W}{84} \times 1000 = 0.5$
 $\frac{W}{100/2} \times 1000 = 100$
 $\therefore W = 0.0422 g in 10 mL$
 $\therefore 11 atom = \frac{Cr_2O_2^{7}}{6}$
Equivalent weight of K₂Cr₂O₇ = Molecular weight
 $\therefore 11 atom = \frac{Cr_2O_2^{7}}{6}$
 $\therefore 11 atom = \frac{Cr_2O_2^{7}}{2.2} \times 2 = \frac{13}{2.4} g = 0.0625g$
 $\therefore 0.0625 g of hydrogen is displaced by $= \frac{x}{0.0625} g$ of
Wellow phosphorus (P₃).
Mole of glucose = $\frac{6.02}{2}$
 $\therefore M = \frac{100 \times 1.47 \times 1000}{50} = 51$
 (d)
Nole of glucose = $\frac{6.02}{2}$
 $\therefore M = \frac{100 \times 1.47 \times 1000}{50} = 51$
 (d)
Nole of glucose = $\frac{6.02}{2}$
 $\therefore M = \frac{100 \times 1.47 \times 1000}{50} = 51$
 (d)
 $\text{Yellow phosphorus (P_3).$
 $\text{Meedual mass of syellow en an phosphorus (P_3).$
 $M = 120 g mol-1$$

 $[\mathrm{NO}_3^-] = \frac{0.1 \times V}{2V} = 0.05$

...

(a)

15

Eq. mass of metal, $x = 28 \times 0.0625 = 1.75g$ (b)

23

The reaction of ethanol with water is as follows: $\rightarrow 2C_2H_5O Na^+ + H_2(g) \uparrow$ nole of H₂ 82 g uces = 82 g of $es = \frac{82}{100}$ g of cyclohexene hen 100 g of cyclohexanol 1.5 g ne formed 5 g alic acid; $5 \times 2;$ halogen $\log en \equiv \frac{3.17}{0.200} \times 8 =$ ≃ 127 g $+ 3H_20$ ne mole of $\frac{18n \times 100}{(142+18n)}$ = 55 10 32.05 1022 $\frac{1}{10^{23}} = 0.1$ $\frac{00}{2} = 2$ impure form of white v phosphorus (P₄)

0 g moi

∴ According to Avogadro's hypothesis, Mass of 6.022×10^{23} molecules of P₄ = 120 g and mass of 1 molecule of $P_4 = \frac{120 \times 1}{6.022 \times 10^{23}}$ $= 19.926 \times 10^{-23} \text{ g}$ $\approx 1.993 \times 10^{-22} \, \mathrm{g}$ $= 1.993 \times 10^{-19}$ mg 33 (a) Molarity \times valence = normality Valence or basicity of $H_2SO_4 = 2$ 34 **(b)** $M = \frac{5.85 \times 1000}{58.5 \times 500} = 0.2$ 35 (b) $m = \frac{18 \times 1000}{60 \times (1500 \times 1.052 - 18)} = 0.19$ 36 **(b)** According to the equation, $NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl$ No. of moles of NaCl = $\frac{4.77}{58.5}$ = 0.08154 No. of moles of AgNO₃ = $\frac{5.77}{170}$ = 0.03394 Thus, $AgNO_3$ is the limiting reagent in the reaction. Now, applying POAC for Ag (as Ag atoms are conserved in the reaction) Moles of Ag in $AgNO_3 = moles of Ag in AgCl$ Or $1 \times \text{moles of AgNO}_3 = 1 \times \text{moles of AgCl}$ Or 0.03394×143.4 (for AgCl) = 4.87g37 **(b)** $M = \frac{\text{moles of urea}}{\text{volume in litre}} = \frac{6.02 \times 10^{20}}{6.02 \times 10^{23} \times \frac{100}{1000}}$ = 0.01 M38 (a) $2PH_3(g) \rightarrow 2P(s) + 3H_2(g)$ 100 0 0 Before dissociation 150 After dissociation 0 39 (b) moles of solute $M. f. = \frac{1}{\text{moles of solute + moles of water}}$ $=\frac{1}{1+\frac{1000}{12}}=0.018$ 40 **(a)** Molar mass of $NH_3 = 14 + 3 \times 1 = 17 \text{ g mol}^{-1}$ mass of 22.4 L of NH_3 at STP = 17 g :. mass of 11.2 L of NH_3 at STP = 8.5 g :. 41 (d) Wt. of metal hydroxide Wt. of metal oxide Eq. wt. of metal + Eq. wt. of OH^- Eq. wt. of metal + Eq. wt. of O_2^{2-}

 $\Rightarrow \frac{1.520}{0.995} = \frac{E+17}{E+8}$ On solving, E = 9.042 (c) Meq. of NaOH = Meq. of HCl $100 \times 0.1 = 10$ $\therefore \frac{wt}{40} \times 1000 = 10$; $\therefore w_{\text{NaOH}} = 0.4$ g 43 (c) : 64 n kg CaC₂ will give 28 n kg polyethylene $\therefore 20 \text{ kg CaC}_2 \text{ will give } \frac{28n \times 20}{64n} = 8.75 \text{ kg}$ 44 **(a)** 111 g CaCl₂ contains Nions of Ca²⁺ and 2N ions of Cl⁻. 45 (b) Number of moles of Fe $=\frac{0.0056}{56}=10^{-4}$ mol 2 moles of Fe is present in 1 mole of $(NH_4)_2SO_4Fe_2(SO_4)_3.$ Therefore, 10^{-4} mole of Fe is present in $=\frac{10^{-4} \times 1}{2}$ mol $= 0.5 \times 10^{-4}$ mol 46 (d) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ 30 20 0 5 0 15 47 (a) Meq. of oxalic acid = Meq. of NaOH $\frac{6.3}{63} \times \frac{1000}{250} \times 10 = 0.1 \times V$ $V = 40 \, {\rm mL}$ *.*.. 48 **(a)** $Ag_2CO_3 \rightarrow 2Ag + CO_2 + (1/2)O_2$ 49 **(b)** Eq. of metal = Eq. of oxide $\frac{1.6}{E} = \frac{2}{E+8}$; E = 3250 (d) $CaCl_2 \rightarrow Ca^{2+} + 2Cl^{\ominus}$ 1 mole of $CaCl_2 = 40 + 35.5 \times 2 = 111 \text{ g}$ 111 g mole of $CaCl_2 = 2 \mod of Cl^{\ominus}$ 222 g of $CaCl_2 = \frac{2}{111} \times 222 = 4 \mod of Cl^{\ominus}$ Therefore, number of Ca^{2+} ions = $2 \times N$ = 2N or $2 \times 6.023 \times 10^{23}$ Number of Cl^{\ominus} ions = 4 × N $= 4 \times 6.023 \times 10^{23}$ $= 2.409 \times 10^{24}$ 51 (c) Any quantitative measurement or observation is represented by number followed by units in

which it is measured.

Thus, A and B are number and units, respectively. 52 (c) CaCO₃ $(40 + 12 + 16 \times 3) = 100 \text{ g}$ CaO \rightarrow +(40 + 16) = 56 g $+ \frac{CO_2}{(12 + 16 \times 2)} = 44 \text{ g}$ 100 g of CaCO₃ \Rightarrow 56 g of CaO 10 g of CaCO₃ \Rightarrow 5.6 g of CaO 100 g of CaCO₃ \Rightarrow 44 g of CO₂ 10 g of CaCO₃ \Rightarrow 4.4 g of CO₂ 53 (a) Mole fraction $=\frac{1}{1+\frac{1000}{10}} = 0.0177$ 54 (a) $wg \operatorname{Fe}_2 \operatorname{O}_3 = \frac{w}{160} \operatorname{mole} \operatorname{Fe}_2 \operatorname{O}_3 = \frac{w}{160} \times 3 \operatorname{mole} \operatorname{O}$ $wg \operatorname{FeO} = \frac{w}{72} \operatorname{mole} \operatorname{FeO} = \frac{w}{72} \times 1 \operatorname{mole} \operatorname{O}$ \therefore mole ration 0 in Fe₂O₃ and FeO = $\frac{3}{160} \times \frac{72}{1}$ = $\frac{216}{160} = 1.35$ 55 (c) Meq. of $NaH_2PO_4 = Meq.$ of NaOH; Thus, $\frac{12}{120/2} \times 1000 = 1 \times V$ $V = 200 \, \text{mL}$ 56 (a) $\begin{array}{l} 3NaH_2 PO_4 \\ \text{Sodium dihydrogen} + \begin{array}{c} 6Na_2 HPO_4 \\ \text{Sodium hydrogen} \end{array} \xrightarrow{\rightarrow} 3Na_5P_3O_{10} \end{array}$ orthophosphate orthophosphate $+ 6H_20$ Hence, stoichiometric ratio = 1.5:357 (c) Mole of $O_2 = \frac{3.2}{32} = \frac{1}{10}$: atoms of $0 = 2N \times \frac{1}{10} = 12.04 \times 10^{22}$ 58 (c) Mole fraction of $H_2O = 0.85$; Mole fraction of $H_2SO_4 = 0.15$; $\therefore \frac{\text{M. f. of } H_2 \text{SO}_4}{\text{M. f. of } H_2 \text{O}} = \frac{\text{mole of } H_2 \text{SO}_4}{\text{mole of } H_2 \text{O}}$ $\frac{0.15}{0.85}$ $m = \frac{\text{mole of H}_2 \text{SO}_4}{\text{wt. of H}_2 \text{O in kg}} = \frac{\text{mole of H}_2 \text{SO}_4 \times 1000}{18 \times (\text{wt. of H}_2 \text{O}/18)}$ $m = \frac{\text{mole of } H_2 \text{SO}_4}{\text{mole of } H_2 \text{O}} \times \frac{1000}{18}$ $= \frac{0.15 \times 1000}{0.85 \times 18} = 9.8$ or 59 **(b)** 1 mole of water means 18 g of water which means 6.023×10^{23} molecules. 1 L of water means = 1000 g1000 g of water = $\frac{1000}{18}$ mol

As 1 mol of water = 6.02×10^{23} molecules $\therefore \frac{1000}{18}$ mol of water $= \frac{1000}{18} \times 6.023 \times 10^{23}$ $= 55.5 \times 6.023 \times 10^{23}$ 60 **(b)** Eq. wt. = $\frac{\text{mol.wt.}}{\text{basicity}}$ 61 (c) $R = 0.0821 L atm mol^{-1} K^{-1}$ $= 8.314 \times 10^7 \text{ ergs mol}^{-1} \text{ K}^{-1}$ $[1 \text{ K Pa d m}^3 = 10^7 \text{ erg or } 1 \text{ J} = 10^7 \text{ erg}$ $= 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ $= 0.002 \text{ kcal mol}^{-1} \text{ K}^{-1} = x \text{ (Assume)}$ $1 \text{ L atm} = \frac{x}{0.0821} = \text{A}$ $1 \text{ erg} = \frac{x}{8.314 \times 10^7} = \text{B}$ $1 \text{ J} = \frac{x}{8.314} = \text{C}$ $1 \text{ kcal} = \frac{x}{0.002} = \text{D}$ Thus. B < C < A < D. 62 (c) $\begin{array}{cc} \text{CO}_2 & + \underset{0}{C} \rightarrow 2\text{CO}_2 \\ 1 & 2\text{ r} \end{array}$ (1 - x) $\therefore 1 - x + 2x = 1.4$ find x. 63 (b) Mole fraction of $O_2 = \frac{8/32}{7/28 + 8/32} = 0.5$ 64 (d) $\begin{array}{ccc} 2H_2O \rightarrow & 2H_2 + O_2\\ 2(1\times2+16) & & 2\times2 & 2\times16\\ = 36\text{kg} & = 4\text{kg} & = 32\text{kg} \end{array}$ $: 36 \text{ kg H}_2 \text{O} \text{ produces oxygen} = 32 \text{ kg}$ \therefore 72 kg H₂O produces oxygen = $\frac{32}{36} \times$ 72 = 64 kg 65 **(b)** As 8 moles of 0-atoms are contained by 1 mole $Mg_{3}(PO_{4})_{2}$ \therefore 0.25 mole of O-atoms are present in Mg₃(PO₄)₂ $=\frac{1}{8} \times 0.25 = 3.125 \times 10^{-2} \text{ mol}$ 66 (d) Conc. Of Na⁺ = $\frac{100 \times 0.1}{200} + \frac{100 \times 0.1 \times 2}{200} = 0.15M$ \therefore Ionic strength of Na⁺ = $\frac{1}{2}\sum C Z^2 = \frac{1}{2} \times$ $[0.15 \times 1^2] = 0.075$ 67 (a) 6.02×10^{23} molecules = 1 mol 1×10^{21} molecule $= \frac{1 \times 10^{21}}{6.02 \times 10^{23}}$ mol $= 1.66 \times 10^{-3}$ mol $200 \text{mgCO}_2 = \frac{200 \times 10^{-3}}{44} \text{ mol} = 4.54 \times 10^{-3} \text{ mol}$ Thus, CO_2 left = (4.54 - 1.66) × 10⁻³

 $= 2.88 \times 10^{-3}$ mol

68 (d) The SI unit for electrochemical equivalent is kg C^{-1} . Electrochemical equivalent mass (Z) = $\frac{mass}{1 \text{ coulomb of electrical charge}} = \frac{\text{kg}}{\text{C}}$ $= \text{kg } \text{C}^{-1}$ sometimes 78 electrochemical equivalent, The abbreviated E_q or Z of a chemical element is the mass of that element transported by 1 coulomb of electrical charge. It is measured with a 79 voltameter. 70 (a) 1.12 litre $H_2 \equiv 1.2$ g 80 \therefore 11.2 litre H₂ = 12 g 71 (c) $4 \text{ L of } 0.25 \text{ M} = 4 \times 0.25 \text{ mol } \text{CH}_3 \text{OH}$ $= 1 \text{ mol CH}_3 \text{OH}$ $= 32 \text{ gCH}_{3} \text{OH}$ $0.8 \text{ kg L}^{-1} = 0.8 \text{ g mL}^{-1}$ 82 $0.8 \text{ g CH}_3 \text{OH}$ is in = 1 mL \therefore 32 g CH₃OH is in = 40 mL 72 (a) $C + O_2 \rightarrow CO_2;$ 12 g C needs 22.4 litre O_2 or 5 × 22.4 litre air. 73 (a) The balanced chemical equation is $Mg + \frac{1}{2}O_2 \rightarrow MgO$ 24g 16g 40 g From the above equation, it is clear that 24 g Mg reacts with $16 \text{ g} \text{ } 0_2$. Thus, 1.0 g Mg reacts with $\frac{16}{24}$ O₂ = 0.67 g O₂ But only $0.56 \text{ g} \text{ O}_2$ is available which is less than 0.67 g. Thus, O_2 is the limiting reagent. Further, $16 \text{ g} \text{ O}_2$ reacts with 24 g Mg. \therefore 0.56 g O₂ will react with Mg = $\frac{24}{16} \times 0.56$ = 0.84 g \therefore Amount of Mg left unreacted = 1.0 - 0.84 =0.16 gMg Hence, Mg is present in excess and 0.16 g Mg is left behind unreacted. 74 (a) H_3BO_3 accepts $OH^$ ions to act as weak monobasic Lewis acid. $H_3BO_3 + H_2O \rightarrow B(OH)_4^- + H^+; \quad K_a = 10^{-9}$ 75 (a) 86 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ 77 **(b)**

Weight of solvent = weight of solution – weight of NaCl $= 1.0585 \times 1000 - 58.5$ = 1058.5 - 58.5 = 1000 g = 1kg $m = \frac{\text{mole of NaCl}}{\text{weight of solvent in kg}} = \frac{1}{1} = 1$ **(b)** Meq. = Normality \times *V* in mL $= 500 \times 0.2 = 100$ (a) $JPa^{-1} = \frac{J}{Pa} = \frac{Work}{Pressure} = \frac{N-m}{N/m^2} = m^3$ Thus, unit (JPa^{-1}) is equivalent to m^3 . (d) 1 mole of water=18 g 81 (c) Equivalent mass of metal = 12Equivalent mass of oxygen = 8 g mol^{-1} \therefore Equivalent mass of metal oxide = 20 g mol⁻¹ (a) I. 1 molecule of $0_2 = \frac{32}{6.022 \times 10^{23} \text{ g}}$ $= 5.3 \times 10^{-23} \text{ g}$ II. 1 atom of N = $\frac{14}{6.022 \times 10^{23} \text{ g}} = 2.3 \times 10^{-23} \text{ g}$ III. 10^{-10} g mol. wt. of oxygen $= 10^{-10} \times 32 = 3.2 \times 10^{-9} \text{ g}$ IV. 10^{-10} g atomic weight of copper $= 10^{-10} \times 63.5 = 6.35 \times 10^{-9} \text{ g}$: Order of increasing mass is II < I < III < IV.83 (c) Mole fraction of alcohol = $\frac{1}{1+4} = \frac{1}{5}$; :. M. f. of water = 4/584 (b) 4.523 + 2.3 + 6.24 = 13.063. As 2.3 has least number of decimal places *i.e.*, one, therefore sum should be reported to one decimal place only. After rounding off, reported sum=13.1 which has three significant figures. 85 **(b)** $18 \text{ mL H}_20 = 18 \text{ g H}_20 = \frac{18}{18} = 1 \text{ mol H}_20$ $= 6.023 \times 10^{23}$ molecules electron in $1 \mod = 10$ ∴ Total electrons in 18 mL H₂O $= 6.02 \times 10^{23} \times 10^{23}$ $= 6.02 \times 10^{24}$ (d) 1 mole $Ca^{2+} = 1$ mole $CaCO_3 = 100$ g Rating = mg of $CaCO_3$ needed per g chelating

	agent (mol. wt. = 380)		proportions. Ratio in the number of atoms of H
	$=\frac{100\times10^3}{100}=263$ mg		and O combining with one P is 3 : 1.5, i.e. 2 : 1.
87	380	99	(c)
07	A molar solution has molarity -1 : A centimolar		Milli mole, in of I = $480 \times 1.5 = 720$
	solution has molarity $-M/100$ A decimolar		Milli mole, in of II = $520 \times 1.2 = 624$
	solution has molarity $M/10$. A decamolar solution		\therefore Total mm = 720 + 624 = 1344
	has molarity = $10M$		Total V = 480 + 520
88			= 1000 ML
00	Solutions of known strength are prepared by		$\therefore \qquad M \times 1000 = 1344$
	dissolving solute in solvent in a measuring flask.		or $M = 1.344$
89	(b)	100	(d)
	$ration of S = \frac{50}{2}$.		Meq. of $HCl = 5 \times 1 = 5$;
	$\frac{1}{32}$,		Meq. of $H_2SO_4 = 20 \times (1/2) = 10$;
	g atom of oxygen = $\frac{30}{16}$;		Meq. of $HNO_3 = 30 \times (1/3) 10;$
	\therefore Ratio of g atoms of S and $0 = 1 : 2$.		Thus, total Meq. of acid = $5 + 10 + 10 = 25$
90	(d)		Total volume = 1000 mL .
	Valence of $M = \frac{27}{2} = 3$,		Also Meq. = $N \times V$.
	Thus, formula of chloride is <i>MC</i> l ₂		$\therefore \qquad N = \frac{25}{1000} = \frac{1}{40}$
91	(c)	101	(d)
	X is AB_A .		\therefore 23 g of Na contains = 6.023 \times 10 ²³ atoms
93	(a)		\therefore 1 g of contains = $\frac{6.023 \times 10^{23}}{10^{23}}$ atoms
	28 g of CO occupies = 22.4 L of CO at NTP		23 6.022×10 ²³
	\therefore 14 g of CO occupies $-\frac{22.4}{2} \times 14$ L of CO at NTP		\therefore 46 g of Na contains = $\frac{0.023 \times 10}{23}$ × 46 atoms
	$\frac{1121}{28} \times 11201 \times 10000000000000000000000000000$		$= 12.046 \times 10^{23}$ atoms
	= 11.2 L of CO at NIP Thus 14 g of CO accurace 11.2 L volume at NTP	102	(a)
	Thus, 14 g of CO occupies 11.2 L volume at NTP.		Follow definition of molality.
04	(c)	103	(c)
74	Gram molecular weight is expressed in g		Meq. of Na ₂ CO ₃ · x H ₂ O in 20 mL = 19.8 × $\frac{1}{10}$
	mol^{-1} <i>i.e.</i> weight of one mole of substance		: Meg. of Na ₂ (Ω_0 : rH ₂ O in 100 mL = 198 x $\frac{1}{2}$ x
95	(h)		$\frac{1}{10}$
,,	mol. wt.		5 W
	Eq. wt. = $\frac{1}{\text{basicity}}$		$\therefore \qquad \frac{\pi}{E} \times 1000 = 19.8 \times \frac{\pi}{10} \times 5$
96	(d)		or $\frac{0.7}{M/2} \times 1000 = \frac{19.8}{2}$
	For water, $1 g = 1 mL$ (:: d for water = 1)		M = 14141
	$\therefore 18 g = 18 \text{ mL}$		$\therefore 23 \times 2 + 12 + 3 \times 16 + 18x = 141.41$
	18 mL water = 6.02×10^{23} molecules = N_A		$\therefore \qquad x = 2$
	molecules	104	(a)
	\therefore in 100 mL number of water molecules =		$H_{2} + \frac{1}{2} 0_{2} \rightarrow H_{2} 0$
	<u>N_A×1000</u>		
	= 555N.		$\frac{100}{2}$ $\frac{100}{32}$ 0 Mole before reaction;
97	(h)		$\left[\frac{100}{2} - \frac{100 \times 2}{32}\right]$: 0 : $\frac{100 \times 2}{32}$ Mole ratio aftre
,,			[2 52] 52 reaction,
	$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$		[Now mole ratio for $H_2: O_2: H_2O: 1: 1/2: 1;$
	$Na_2CO_3 \xrightarrow{a} Na_2CO_3$		Also, O_2 is limiting reagent thus]
	The no. of equivalent of $NaHCO_3 = No.$ of		: wt. of H ₂ 0 formed = $\frac{100 \times 2}{32} \times 18 = 112.5 \text{ g}$
	equivalent of Na_2CO_3 formed. Thus , same	105	(b)
	equivalent of HCl will be used.		The compound is $C_4H_8O_2$;
98	(a)		Mol. wt. = 88
	$P_2O_3, PH_3 \mbox{ and } H_2O$ illustrates the law of reciprocal		\therefore Vapour density = 44

Page | 18

106 (c) $A_2O_3 + 3H_2 \rightarrow 2A + 3H_2 O_{0.1596 g}$ 0.006 g of H_2 reduces 0.1596 g of A_2O_3 . 6 g of H₂ will reduce = $\frac{0.1596 \times 6}{0.006}$ = 159.6 g of A₂O₃ Thus, molar mass of $A_2O_3 = 159.6$ g Let, atomic weight of A = x $\therefore 2x + 3 \times 16 = 159.6$ $2 = 159.6 - 48 = 111.6 \Rightarrow x = 55.8$ 107 (c) 22.4 litre O_2 at STP = 1 mole. 109 (b) $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$ 100 g 73 g 44g 100 mL of 20% HCl = 20 g = HClIn this case, CaCO₃ is the limiting reactant. $:: 100 \text{ g of CaCO}_3 \text{ gives CO}_2 = 44 \text{ g}$: 20 g CaSO₃ will give $CO_2 = \frac{44 \times 20}{100} = 8.80$ g 110 (b) Oxygen = 67.67 gMetal = 32.33 g $67.67 \text{ g oxygen} \equiv 32.33 \text{ g metal}$ $8 \text{ g Oxygen} = \frac{32.33}{67.67} \times 8.0$ $= 3.82 \, \mathrm{e}$ 111 (a) Meq. of metal = Meq. of oxygen $\frac{60}{E} = \frac{40}{8}$ E = 12*.*.. Now, Meq. of metal = Meq. of bromide $\frac{100 - a}{12} = \frac{a}{80}$ $a \approx 87\%$... 112 (b) Meq. of $H_2SO_4 = Meq.$ of NaOH $0.1 \times 2 \times V = 50 \times 0.2 \times 1$ $V = 50 \, {\rm mL}$:. 113 **(b)** $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$ Mole ratio of $CH_4: O_2:: 1: 2$ 114 (c) Option (c) is incorrect. It's correct form is as follows : 1 m = 39.37 inches115 (d) 1 mole is defined as the amount of matter that contains as many as objects (atoms, molecule, electron, proton or whatever, objects we are considering) as the number of atoms in exactly 12g of C¹², *i.e.*, Avogadro's number.

Wt. of H : 0 in H_2 0 is 2 : 16 117 **(b)** 0.1 mole has atoms = $0.1 \times 6.02 \times 10^{23} \times 3$ $= 1.806 \times 10^{23}$ 118 (b) Unit of viscosity is Nsm⁻². $Viscosity(\mu) = \frac{Force \times Time}{(Length)^2}$ $= \frac{Newton \times Second}{(Metre)^2}$ 119 (a) Meq. of NaOH=Meq. of acid; $20 \times 0.4 = 40 \times N;$ N = 0.2or M = 0.1*.*.. 120 (c) 1 molal glucose solution means $1000 \text{ g H}_20 \text{ has} = 1 \text{ mol glucose} = 180 \text{ g glucose}$ Total mass of solution = 1180 g 1 mol glucose is = 1180 g Thus, 0.2 mol glucose is = 236 g solution 121 (a) $\begin{array}{ccc} C_6 & H_{13} & OH \\ \text{mol. wt.} & ^{102} \end{array} \xrightarrow{-H_2O} & C_6H_{12} \\ \text{mol. wt. 84} \end{array}$: 102 g cyclohexanol gives 84 g C₆H₁₂ : 102 g cyclohexanol will give = $\frac{84 \times 100}{102}$ g C₆H₁₂ Also % yield is 75% \therefore 100 g cyclohexanol will give = $\frac{84 \times 100}{102} \times$ $\frac{75}{100}$ g C₆H₁₂ $= 61.769 \text{ g} \text{ C}_6 \text{H}_{12}$ 122 (b) $N = \frac{2.7 \times 1000}{(98/3) \times 250} = 0.33$ 123 (d) Meq. of $H_3PO_4 = Meq. of Ca(OH)_2$; $0.25 \times 3 \times V = 25 \times 0.03 \times 2$ V = 2 mL. 125 (c) X_2 0 has X : 0 :: 14 : 16 \therefore At. wt. of X = 7126 (d) $1 \mod O_2 = 4 \text{ equivalent} = 20 \text{ dm}^3$ \therefore Volume of 1 equiv of $O_2 = 5 \text{ dm}^3$ 127 (c) Let *a* g of Cu be oxidised to give CuO, *i.e.*, $\frac{(63.6+16)a}{63.6}$ g Thus, final weight $= (3.18 - a) + \frac{(63.6 + 16)a}{63.6} = 3.92$ $a = 2.94 \, \mathrm{g}$:.

Thus, % of Cu left unoxidised $\frac{(3.18 - 2.94)}{3.18} \times 100 = 7.55\%$ 129 (b) $N_2 + 3H_2 \rightarrow 2NH_3$ The ratio of volumes of nitrogen, hydrogen and ammonia is 1:3:2. These ratio illustrate the law of Gay-Lussacc. 130 (c) Mol. wt. = $70 \times 2 = 140$: (CO)x, $\therefore (12 + 16)$. x = 140 $\therefore x = 5$ 131 (c) Number of moles = $\frac{\text{mass}}{\text{atomic mass}} = X$ moles $= x N_0 atom$ atoms $\propto \frac{1}{\text{atomic mass}}$ Thus, Least atomic mass is that of lithium. Thus, Li have largest number of atoms. 132 (c) Number of moles = $\frac{\text{mass}}{\text{molar mass}} \times N_A$ \therefore Number of atoms in 4.25 g NH₃ $=\frac{4.25}{1.7} \times N_A \times 4 = N_A$ Number of atoms in $8 g O_2$ $0_2 = \frac{8}{32} \times N_A \times 2 = \frac{N_A}{2}$ Number of atoms in 2 g H_2 $H_2 = \frac{2}{2} \times N_A \times 2 = 2 N_A$ Number of atoms in 4 g He $He = \frac{4}{4} \times N_A \times 1 = N_A$ Thus, 2 g of H_2 contains the maximum number of atoms among the given. 133 (c) For electrolytic concentration term formality is used in place of molarity. Formality is g formula weight of electrolyte in one litre solution. Remember it is not possible to determine exact mol. weight of electrolytes. We simply assume the formula say for sodium chloride it is NaCl and formula weight is 58.5. This value can never be obtained experimentally. 134 (c) Nitrogen shows variable valency and thus, have variable equivalent weight. 135 (d) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$ 20×0.5 20×1 mm = 1020 0 0 taken 0 10 10 20 mm

formed Milli mole of $BaSO_4 = 10$ Mole of $BaSO_4 = 10^{-2}$ or 136 (d) 71 g Cl₂ reacts with 64 g S, \therefore 35.5 g Cl₂ reacts with 32 g S. 137 (a) Mill mole of $H_2SO_4 = \frac{1}{10} \times 1000 = 100$ $\frac{w}{98} \times 1000 = 100$:. :. w = 9.8 g138 (d) M. f. = $\frac{5.85/58.5}{\frac{5.85}{5.85} + \frac{90}{10}} = 0.0196$ 139 (a) $N = M \times \text{acidity} = 1 \times 2 = 2$ (Na₂CO₃ is diacidic base) 140 (a) $M_{\rm H_2O} = \frac{18}{1} = 55.6 \times d$ **:**. d = 1 : M = 55.6141 (a) Eq. of $H_2SO_4 = 0.5 \times 2 = 1.0$; Eq. of $Ca(OH)_2 = 0.2 \times 2 = 0.4$; Equal Eq. reacts and thus, Eq. of $CaSO_4$ formed = 0.4 : Mole of CaSO₄ formed $\frac{0.4}{2} = 0.2$ 142 (b) $60 \text{ g NH}_2 \text{CONH}_2$ has 28 g N \therefore 100 g urea has $N = \frac{28 \times 100}{60}$ 143 (b) Valence of an element is variable say it is 2 and 3 in FeCl₂ and FeCl₃ respectively. Also equivalent weight = $\frac{\text{at. weight}}{\text{valence}}$ and thus, it is also variable. 144 (a) Meq. of conc. HCl = Meq. of dil. HCl $10 \times V_1 = 100 \times 1$ $V_1 = 10$ mL :. Thus, 10 mL of conc. HCl should be added 90 mL to make at 100 mL of desired normality. 145 (c) Density of substance is defined as its amount of mass per unit volume. So, SI unit of density can be obtained by using the following relation. SI unit of density = $\frac{\text{SI unit of mass}}{\text{SI unit of volume}} = \frac{\text{kg}}{\text{m}^3}$ or kgm⁻³ 146 **(b)** $2Ag + 2HNO_3 \rightarrow 2AgNO_3 + H_2$ $2AgNO_3 + 2NaCl \rightarrow 2AgCl + NaNO_3$ $AgCl \equiv AgNO_3 \equiv Ag$

143.5g 170 g 108g :: 143.5 g AgCl is obtained from Ag = 108g \therefore 2.87 g AgCl is obtained from Ag = $\frac{108 \times 2.87}{1435}$ = 2.16g147 (b) 3.0115×10^9 molecules of X = 10^{-12} g 6.023×10^{23} molecules of X = $\frac{10^{-12} \times 6.023 \times 10^{23}}{3.0115 \times 10^{9}}$ = 200 g 148 (b) Mol. wt. of metal chloride = $95 \times 2 = 190$ At. wt. of metal $=\frac{6.4}{0.13} = 49.23$ Let the metal chloride be MCl_n Then $49.23 + n \times 35.5 = 190$ $n = 3.9 \approx 4;$:. : Eq. wt. of metal $=\frac{49.23}{4}=12.3$ 149 (a) $\begin{array}{c} A_2 \\ A_2 \\ 1nitial 5 mol \end{array} + \begin{array}{c} 3B_2 \\ 7 mol \end{array} \rightarrow \begin{array}{c} 2AB_3 \\ 0 \\ 0 \end{array}$ By reaction 1 mol A₂ requires 3 mol B₂. Hence, 7 mol B₂ will react with $\frac{7}{3}$ moles A₂ $A_2 \text{ left} = 5 - \frac{7}{3} = 8/3 \text{ mol } A_2(g)$ $1\ mol\ A_2\ produces\ 2\ mol\ AB_3.$ Hence, $\frac{7}{3}$ mol A₂ will produce $\frac{7}{3} \times 2$ mol AB₃ Total mol of gases in vessel $=\frac{8}{3} \mod A_2(g) + \frac{14}{3} \mod AB_3(g) = \frac{22}{3} \mod AB_3(g)$ 150 (c) $M_{\rm HCl} = 1;$ $M_{\rm H_2SO_4} = \frac{0.4}{2} = 0.2$ $M_{\rm Na_2CO_3} = \frac{0.1}{2} = 0.05$ 151 (d) In 1 L air, volume of $O_2 = 210 cc$ $: 22400 \text{ cm}^3 = 1 \text{ mol}$ $\therefore 210 \text{ cm}^3 = \frac{210}{22400} = 0.0093 \text{ mol}$ 152 (a) Presently the new symbol used is 'u' (known as unified mass) in place of amu. It is defined as mass exactly equal to 1/12 th the mass of one C – 12 atom. 153 **(b)** 1 mole = $M \times V_{in l}$ 154 (c) Equivalent weight of metal $\frac{\text{Weight of metal}}{\text{Weight of chlorine combined}} \times 35.5$: Equivalent weight of metal

 $=\frac{(74.5-35.5)}{25.5} \times 35.5 = 39.0$ 155 (d) 16 g O contains N atoms of O $32 \text{ g } 0_2$ contains 2N atoms of 0 $48 \text{ g } 0_3$ contains 3N atoms of 0 156 (c) The correct formulae that expresses the law of equivalent correctly is $m_1E_2 = E_1m_2$ 157 (c) $m = \frac{wRT}{PV} = \frac{510 \times 10^{-3} \times 0.0821 \times 273}{1 \times 67.2/1000} = 170$ 158 (c) Equivalent weight of metal = 12Equivalent weight of oxygen = 8Equivalent weight of MO (oxide) with divalent metal = 20Thus, molecular weight of metal oxide = 40159 (d) 1 mole $P_4 = N$ molecules of $P_4 = 4 N$ atoms of P_4 . 160 (a) 22.4 litre = 1 mole; $\therefore 1m^3 = 10^3$ litre $= \frac{10^3}{22.4} = 44.6$ 161 (a) $18 \text{ mL H}_20 \text{ or } 18 \text{ g H}_20 \text{ has } 10N \text{ electrons.}$ 162 (c) $CaCl_2 + CO_3^{2-} \rightarrow CaCO_3 + 2Cl^{-}$ 111 g 100g $CaCO_3 \rightarrow CaO + CO_2$ 56g 100 g :: 56 g CaO is obtained by decomposition of $CaCO_{3} = 100g$ ∴ 0.959 g CaO will be obtained by the decomposition of $CaCO_3 = \frac{100 \times 0.959}{56}$ = 1.71gFurther, $100 \text{ g CaCO}_3 \equiv 111 \text{ gCaCl}_2$ $1.71 \text{g CaCO}_3 = \frac{111 \times 1.71}{100}$ $=1.89 \text{ g CaCl}_2$ % of CaCl₂ in the mixture = $\frac{1.89}{4.22} \times 100$ = 44.78= 45%163 (d) Butane and isobutance have same molecular formula. $C_4H_{10} + \left(\frac{13}{2}\right)O_2 \rightarrow 4CO_2 + 5H_2O_2$ Thus,

: 58 g C₄H₁₀ requires $O_2 = \frac{12}{2} \times 32$ g $:: 1000 \text{ g C}_4 \text{H}_{10} \text{ requires O}_2$ $=\frac{13}{2} \times \frac{32 \times 1000}{58} = 3586.2 \text{ g} = 3.586 \text{ kg}$ 164 (d) g-atom of $I_2 = \frac{254}{127} = 2;$ g-atom of oxygen $=\frac{80}{16}=5$ \therefore compound is I₂O₅. 165 (c) g atom of I = $\frac{25.4}{127}$ = 0.2 g atom of oxygen = $\frac{8}{16}$ = 0.5 \therefore Ratio of g atoms I : 0 : : 2 : 5 166 **(b)** Meq. of NaOH left $= 20 \times 0.1 - 10 \times 0.1 = 1;$ Thus, solution is alkaline and phenolphthalein gives pink colour in alkaline medium. 167 (a) 249.6 g CuSO₄ \cdot 5H₂O contains 90 g H₂O. 168 (d) ppm = wt. of solute in 10^6 g H₂O 10^3 g H₂O contains 10 g CaCO₃ : $10^6 \text{ g H}_2 \text{ O contains} = \frac{10 \times 10^6}{10^3} = 10,000 \text{ ppm}$ CaCO₃ 169 (d) Formula of sodium ferrocyanide, $Na_4[Fe(CN)_6]$ suggests that it has four sodium atoms. Number of Na-atoms = Number of moles \times number of atoms per molecule × Avogadro's number $= 2 \times 4 \times 6.023 \times 10^{23}$ Na-atoms $= 48 \times 10^{23}$ Na-atoms 170 (a) Mass of one He-atom = 4 u, 4 u = 1 He-atom $\therefore 100 \text{ u} = \frac{100}{4} = 25 \text{ He} - \text{atom}$ 171 (a) The limiting reagent gives the moles of product formed in the reaction. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$ 22.4 L 11.2 L 2 mol ∵ 22.4 volume at STP is occupied by $Cl_2 = 1 \text{ mol}$ \therefore 11.2 L volume will be occupied by $Cl_2 = \frac{1 \times 11.2}{22.4}$ mol = 0.5 mol Thus, $H_2(g) + O_2(g) \rightarrow 2HCI(g)$ 1 mol 0.5 mol

Since, Cl₂ possesses minimum number of moles, thus it is the limiting reagent. As per equation, mol $Cl_2 = 2$ mol HCl $0.5 \text{ mol } \text{Cl}_2 = 2 \times 0.5 \text{ mol } \text{HCl} = 1.0 \text{ mol } \text{HCl}$ Hence, 1.0 mole of HCl(g) is produced by 0.5 mole of Cl₂ (or 11.2 L). 172 **(b)** $M = \frac{9.8}{98 \times 2} = \frac{1}{20} = 0.05$ 174 (b) Density = $\frac{Mass}{Volume} = \frac{18.72 \text{ g}}{1.81 \text{ cm}^3} = 10.34 \text{ g/cm}^3$ 175 (c) g atom of $N = \frac{28}{14} = 2$ g atom of oxygen $=\frac{80}{16}=5$ 176 (c) Mole fraction of solute = $\frac{n}{n+N}$ Mole fraction of solvent $=\frac{N}{n+N}$; 177 (a) Here, vapour density of gas = 11.2 \therefore Molecular weight = 2 × vapour density $= 2 \times 11.2 = 22.4$ g 22.4 g of gas occupied volume at STP = 22.4 L \therefore 1 g gas occupied volume at STP = 1 L 178 (d) Empirical formula wt. =13 $n = \frac{\text{mol.wt.}}{\text{empirical formula wt.}} = \frac{78}{13} = 6$ \therefore Formula is (CH)₆, *i.e.*, C₆H₆ 179 (d) 22400 mL of O_2 at NTP occupied by = 32 g O_2 \therefore 112 mL of O₂ at NTP occupied by $=\frac{32}{22400}$ × 112 mL 0₂ = 0.16 g 0₂ 180 (a) Since, $1 L = 1000 \text{ cm}^3$ and 1 m = 100 cm $\frac{1 \text{ m}}{100 \text{ cm}} = 1 = \frac{100 \text{ cm}}{1 \text{ m}}$ or $\left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^3 = \frac{1 \text{ m}^3}{10^6 \text{ cm}^3} = 1^3 = 1$ Hence, 5 L = 5 × 1000 cm³ × $\frac{1 \text{ m}^3}{10^6 \text{ cm}^3} = \frac{5 \text{ m}^3}{10^3} = 5 \times$ 10^{-3} m^3 181 (b) $N = \frac{1}{49 \times (100/1000)} = 0.2$ 182 (a) $N = \frac{(24.5 \times 1000)}{(98/2) \times 250} = 2;$ $M = \frac{(24.5 \times 1000)}{98 \times 250} = 1$ 183 (a)

No. of molecules in *n* mole = $n \times n$ 193 (d) $m = \frac{15}{98 \times \frac{(100 \times 1.1 - 15)}{98}} = 1.6$ Av. no; Also no. of atom in 1 molecule = atomicity. 184 (a) $m = \frac{0.5 \times 1000}{500} = 1$ 194 (c) The incorrect option is (c). It's correct form is as 185 (d) follows: 6.02×10^{23} molecules of CO = 1 mole of CO $1 \text{mg} = 10^{+6} \text{ng}$ 6.02×10^{24} moles of CO = 10 mles of CO $(1mg = 10^{-6}kg = 10^{+6}ng)$ 1 mole of CO contains 1 g atom of oxygen 195 (d) 10 moles of CO contains 10 g atoms of oxygen. $C_aH_b + \left(a + \frac{b}{4}\right)O_2 \longrightarrow aCO_2 + (b/2)H_2O$ 186 (c) $F = \frac{9}{5}t^{\circ}C + 32$ Excess 10 10a 0 $(200 - 32) = \frac{9}{5}t^{\circ}C \Rightarrow \frac{9}{5}t^{\circ}C = 168$ 10a = 40Ŀ. $t^{\circ}C = \frac{168 \times 5}{9} = 93.3^{\circ}C$ 5b = 50197 (d) 187 (c) On dilution since volume of solution changes and $Meq. of H_3PO_3 = Meq. of KOH$ this normality, molarity molality changes. The $20 \times 0.1 \times 2 = 0.1 \times 1 \times V$ equivalent $\left(\frac{\text{wt.}}{\text{eq.wt.}}\right)$, mole $\left(\frac{\text{wt.}}{\text{mol.wt.}}\right)$ do not change. 198 (b) (H₃PO₃ is dibasic, KOH is monobasic) (i) 28.7 pm $\times \frac{10^{-12} \text{ m}}{1 \text{ pm}} = 2.87 \times 10^{-11} \text{ m}$ $V = 40 \, {\rm mL}$ *.*.. (ii) 15.15 μ s $\times \frac{10^{-6} \text{ s}}{1 \,\mu \text{ s}} = 1.515 \times 10^{-5} \text{ s}$ 188 (a) For poly atomic molecules, mol. wt. = at. wt. × (iii) 25365 mg $\times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 2.5365 \times$ atomicity. 189 (b) 10^{-2} kg Meq. of acid. Meq. of NaOH 199 (a) $\frac{0.52}{E} \times 1000 = 100 \times 0.1$ 98 g H₂SO₄ contains 32 g S or 1 mole of S 200 (c) E = 52190 (a) $= 50 \times 0.5 = 25$ Oxygen = 20 gMetal = 80 g $20 \text{ g oxygen} \equiv 80 \text{ g metal}$ \therefore 8 g oxygen \equiv 32 g metal 191 (d) 22.4 litre refers for mol. wt. \therefore 11.2 litre refers for $\frac{\text{mol.wt.}}{2}$ = vapour density. 192 (b) 1 molecules of $Ca(OH)_2$ contains 5 atoms; :1 mole contains 5N atoms

Number of millimoles of Ca(OH)₂ Number of millimoles of $CaCO_3 = 25$ Number of milliequivalents of $CaCO_3 = 50$: Volume of 0.1N HCl = $\frac{50}{0.1}$ = 500 cm³

5b

 $\therefore a = 4$ $\therefore b = 10$