N.B.Navale

Date : 01.04.2025 Time : 00:56:42 Marks : 63

TEST ID: 69 CHEMISTRY

CHEMICAL BONDING AND MOLECULAR STRUCTURE

Single Correct Answer Type

Sin	gle Correct Answer Type	9				
1.	Isostructural species a	re those, which have the				
	same shape and hybri	disation. Among the				
	given species, identify	the isostructural pairs.				
	a) NF ₃ and BF ₃	b) BF ₄ and NH ₄				
	c) BCl ₃ and BrCl ₃	d) NH ₃ and NO $_3^-$				
2.	What is the H - S - H be	ond angle in H ₂ S?				
	a) 104.5º	b)92.1º				
	c) 91 ⁰	d)90º				
3.	The bond angles of					
	$\rm NH_3$, $\rm NH_4^+$ and $\rm NH_2^-$ are	e in the order				
	a) $NH_2^- > NH_3 > NH_2^-$	$^{+}_{4}$ b) NH ₄ ⁺ > NH ₃ > NH ₂ ⁻				
	c) $NH_3 > NH_2^- > NH_2^-$	$^+_4$ d)NH ₃ > NH ₄ ⁺ > NH ₂ ⁻				
4.	In accordance to mole	cular theory,				
	O ₂ ⁺ is diamagnetic	0 ⁺ ₂ is diamagnetic				
	a) and bond order is	b) and bond order is				
	more than 0_2	less than O ₂				
	0 ⁺ ₂ is paramagnetic	0_2^+ is paramagnetic				
	c) and bond order is	d) and bond order is				
	more than O_2	less than 0 ₂				
5.	Bond energy of H – H,	F – F and H – F bonds				
	are 104,38 and 135 kc	al mol ⁻¹ , respectively.				
	The resonance energy	in the H – F molecule				
	will be					
	a) 142kcalmol ^{–1}	b) 66 kcal mol ^{–1}				
	c) 72.14 kcal mol ⁻¹	,				
6.	Which of the following					
stabilized by losing one electron from its						
	НОМО?					
	a) C ₂	b) N ₂				
	c) CN	d)0 ₂				
7.		nds has maximum bond				
	length?					
	a) C - O	b)C - H				
0	c) C - C	d)C - N				
8.	The number of π - bon	ids present in benzoic				
	acid molecule are					
	a) 5	b)4				
0	c) 3	d)6				
9.	Which is the most cov					
	a) C – F	b) $C - O$				
	c) C – S	d)C – Br				

10. Which of the following is correct decreasing

	order of the repulsive i	nteraction of electron
	pairs in a molecule?	
	a) bond pair - bond	b) lone pair - bond pair
	pair > lone pair -	> lone pair - lone
	bond pair > lone	pair > bond pair -
	pair - lone pair	bond pair
	c) bond pair - bond	d)lone pair - lone pair
	pair = bond pair -	> lone pair - bond
	lone pair > lone pair	· pair > bond pair -
	- lone pair	bond pair
11.	What is the geometry of	of water molecule?
	a) distorted tetrahedra	lb)Tetrahedral
	c) Trigonal planar	d)diagonal
12.	Among the following m	olecules, which one
	have trigonal planar st	ructure?
	XeO_3 , SO_3 , BF_3 , NH_3	
	a) XeO ₃ and BF ₃	b) BF_3 and SO_3
	c) NH_3 and SO_3	d)All of these
13.	In which of the following	
	intramolecular hydrog	
	a) Ammonia	b)Ethanol
	c) Water	d)0-nitrophenol
14.	Which of the following	
	regarding BeCl ₂ molecu	
	a) It violates octet rule	· ·
	and has sp ²	hybridization and
	hybridisation	follows octet rule
	c) It violates octet rule	-
	and has linear	true
15	structure	mologulog in the
15.	Arrange the following increasing order of bor	
	H_2O H_2S H_2Se H_2'	
		IV
	a) $I < II < III < IV$	
	c) $I < III < II < IV$	
16	In NO_3^- ion, the number	•
10.	pairs of electrons on ni	=
	a) 2,2	b) 3,1
	c) 1,3	d)4,0
17.	Which one among the f	-
±/·	the hydrogen bond?	

b) Water

a) Phenol

c) Liquid NH₃ d) Liquid HCL 18. Given : Dipole moment of HCl = 1.03DBond length = 127 pm, dipole moment of HI = 0.38D Bond length = 161pm The ratio of partial positive charge on H-atom in HCl to that in Hl will be a) 2 : 1 b) 3.42 : 1 c) 2.39 : 1 d)4:1 19. Among the following, choose the correct pair, which is is Isostructural and isoelectronic? a) NO_3^-, CO_3^{2-} b) SO_3 , $NO_3^$ c) ClO_3^-, CO_3^{2-} d) CO_3^{2-}, ClO_3^{-} 20. The compound having maximum dipole moment is a) NH_3 b) NF₃ c) NCl₃ d)Nl₃ 21. Of the three molecules XeF₆, SF₄, SiF₄, which have tetrahedral structure? a) All the three b) SiF₄ and SF₄ c) Only SiF₄ d) Only SF₄ 22. Which of the following pairs has zero dipole moment? a) CH_2Cl_2 and NF_3 b) SiF₄ and BF_3 d) BF_3 and NF_3 c) PCl_3 and CIF23. In gas phase H - O - O - H bond angle in H_2O_2 is a) 94.8° b)111.5° c) 98.4⁰ d)147.5° 24. In which of the following molecules the van der Waals' forces is likely to be the most important in determining the melting and boiling point? a)CO b) H_2S d)HCL c) Br_2 25. Arrange the following in the correct order of bond length : N_2 , O_2 and Cl_2 . a) $N_2 > Cl_2 > O_2$ b) $N_2 < Cl_2 < O_2$ c) $N_2 < O_2 < Cl_2$ d) $Cl_2 < N_2 < O_2$ 26. The bond order of H₂ ion is $\frac{1}{2}$. If it has 2 bonding electrons, how many antibonding electrons it will have? a) 3 b)1 c) 2 d)4 27. Which of the following set possess sp^3 hybridisation? a) IO_{4}^{-} , ICI_{4}^{-} , IF_{4}^{+} b) XeO₃, XeO₄, XeF₄ c) SO_3^{2-} , SO_4^{2-} , SO_5^{2-} d) PCl_4^+ , BF_4^- , ICl_4^- 28. The pair of molecules forming strongest hydrogen bonds is

a) SiH₄ and SiF₆ $CH_3 \longrightarrow C \longrightarrow CH_3$ and CHCb) OH and CH_3 d) H_2O and H_2 c) \mathbf{O} 29. The molecule having zero dipole moment is a) CIF_3 b)CH₄ c) PH_3 d) CH_2Cl_2 30. Which of the following is correct regarding bond energies of NO, NO⁺and NO⁻? a) $NO^- > NO > NO^+$ b) $NO^+ > NO^- > NO$ c) $NO > NO^{-} > NO^{+}$ d)NO⁺ > NO > NO⁻ 31. The percentage ionic character in Cs – Cl bond present in CsCI molecule will be, if the electronegativities values for Cs and Cl are 0.8 and 3.0, respectively a) 62.9% b)60% c) 75% d)52.14% 32. The compound MX_4 is tetrahedral. The number of ∠XMX formed in the compound is a) three b) four c) five d) six 33. Ortho - nitrophenol is less soluble in water than p-and m-nitrophenols because a) O- nitrophenol is b)O-nitrophenol more steam volatile shows than those of m-and intramolecular Hp-isomers bonding c) O-nitrophenol showsd) melting point of Ointermolecular Hnitrophenol is lower bonding than those of m- and p-isomers 34. Which of the following compounds has the smallest bond angle in its molecule? a) H_2O b) H_2 S d)SO₂ c) NH_3 35. Which of the following is paramagnetic? a) NO⁻ b) 0^{2-}_{2-} c) CN^{-} d)CO 36. What is standard N = N bond enthalpy from following reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g); \Delta H^\circ = -83 \text{ kJ}$ $(\Delta H^{\circ}(H - H) = 435 \text{ kJ}; \Delta H^{\circ}(N - H) = 389 \text{ kJ})$ a) 435 kJ b) 1305 kJ c) 2334 kJ d)946 kJ 37. Which of following requires maximum energy

to undergo decomposition?

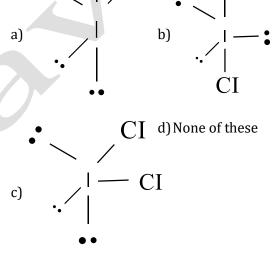
a)
$$O_2$$
 b) C_2
c) O_2^+ d) N_2

38. What is the type of hybridization of carbon atoms marked with star?

$$H_2C = C - C - O - H$$

$$| \qquad | \\H O$$

$$(a) sp^2, sp \qquad b) sp^2, sp^2$$


$$(c) sp sp^2 \qquad d) None of these$$

- 39. Which of the following is correct order of bond angle?
 - a) $\begin{array}{c} H_2 O > OF_2 > SF_2 \\ > H_2 S \\ C) \begin{array}{c} H_2 O > OF_2 > SF_2 \\ > F_2 S \end{array} \end{array}$ b) $\begin{array}{c} H_2 O > SF_2 > OF_2 \\ > H_2 S \\ P_2 O > OF_2 > H_2 S \\ P_2 O > OF_2 > P_2 S \end{array}$ b) $\begin{array}{c} H_2 O > H_2 S > OF_2 \\ P_2 O > P_2 S \end{array}$ c) $\begin{array}{c} H_2 O > OF_2 > H_2 S \\ P_2 O > OF_2 > P_2 S \end{array}$ c) $\begin{array}{c} H_2 O > OF_2 > OF_2 \\ P_2 O > OF_2 > P_2 S \end{array}$ c) $\begin{array}{c} H_2 O > OF_2 > OF_2 \\ P_2 O > OF_2 > P_2 S \end{array}$ c) $\begin{array}{c} H_2 O > OF_2 > OF_2 \\ P_2 O > OF_2 > OF_2 \\ P_2 O > OF_2 & P_2 S \end{array}$ c) $\begin{array}{c} H_2 O > OF_2 \\ P_2 O > OF_2 & P_2 \\ P_2 O & P_2$ $> SF_2$
- 40. The shape of BrF_5 molecule is a) trigonal pyramidal b) square pyramidal c) trigonal bipyramidal d) square planar
- 41. Match the type of bond (given in Column I) with method of formation (given in Column II) and choose the correct option from the codes given below.

	Column I	Column II				
	A. σ-bond	1. Lateral overlapping				
	B. Covalent bond	2. Sharing of electrons				
	C. Ionic bond	3. Transfer of electrons				
	D. π-bond	4. Donating an electron				
		5. Accepting an electron				
		6. Axial overlapping				
	Codes					
	ABCD					
	a) 6 2 3 1	b)3 2 6 1				
	c) 1 2 3 4	d)2 4 5 6				
42.	What is the bond ang	•				
	(answer approx valu					
	a) 120°28	b)109°				
	c) 90°	d)60°				
43.						
10.		around nitrogen atom in				
	pyridine is					

a) sp³, pyramidal

edral					
octahedral					
ese					
lerance					
gation					
If molecule MX ₃ has zero dipole moment, the					
sigma bonding orbitals used by M (atomic					
lised					
ese					
structure					

- 48. The correct order of decreasing polarity is $a) {HF > SO_2 > H_2O$ $> NH_3}$ $b) {HF > H_2 O > SO_2$ $> NH_3}$ $C_{\rm c} = \frac{\rm HF > NH_3 > SO_2}{\rm SH_2O}$ $^{H_2O > NH_3 > SO_2}_{d)}$ > HF
- 49. Consider the following compounds, I. 1,2 hydroxybenzene II. 1, 3-dihydroxybenzene III. 1, 4-dihydroxybenzene IV. Hydroxybenzene The increasing order of their boiling points is a) $I < \| < I \| < IV$ b) $IV < I < \parallel < III$ c) $IV < \| < I < I \|$ d) I < II < IV < III50. Which of the following molecule contain 50% p - character of hybrid orbital in C atom? a) Acetylene b) Methane c) Ethane d)Propene
- 51. In which of the following ionization processes,

the bond order has increased and magnetic behaviour has changed?

a) $C_2 \rightarrow C_2^+$	b) NO \rightarrow NO ⁺
c) $0_2 \to 0_2^+$	d) $N_2 \rightarrow N_2^+$

52. Match the following and choose the correct option.

Column I

Column II

A.	SF_4				1.	sp^3d^2	
B.	IF ₅				2.	sp^3	
C.	NO_2^+				3.	sp	
D.	$\mathrm{NH_4}^+$				4.	sp ³ d	
Codes							
А	В	С		D			
a) 4	1		3		b)1	3	2
2					4		
c) 3	2		4		d)3	1	2
1					4		

	-	1
53.	The molecular shapes	of SF ₄ , CF ₄ and XeF ₄ are
	a) different with 1,0	b) different with 0, 1
	and 2 lone pairs of	and 2 lone pairs of
	electrons on the	electrons on the
	central atoms,	central atoms,
	respectively	respectively
	c) the same with 1, 1	d) the same with 2, 0
	and 1 lone pairs of	and 1 lone pairs of
	electrons on the	electrons on the
	central atoms,	central atoms,
	respectively	respectively
54.	Which set of molecules	are paramagnetic?
	a) B_2 , C_2 and O_2	b) C_2 , O_2 and B_2
	c) O_2 , N_2 and B_2	d) B_2 , O_2 and NO
55.	$\ln XeF_2$, XeF_4 and XeF_6	, the number of lone

- 55. In XeF₂, XeF₄ and XeF₆, the number of lone pairs of X_e, respectively are
 a) 2,3,1
 b) 1,2,3
 - c) 4,1,2 d) 3,2,1
- 56. The d-orbital involved in sp³ d-hybridisation is a) d_{xy} b) d_{zx} c) d_{z^2} d) $d_{x^2-y^2}$ 57. The number of σ and π -honds in 2 -
- 57. The number of σ and π -bonds in 2 formylbenzoic acid are respectively a) 10, 3 b) 14, 3 c) 12, 5 d) 17, 5

- 58. What is the value of C-O-H bond angle in $CH_3 OH$?
 - a) 107° b) 108.9° c) 109.5° d) 110°
- 59. Which of the following statement(S) is / are true?
 - a) HF is less polar than b) Absolutely pure HBr water does not contain any ions
 - c) Chemical bond d) In covalency , formation takes transference of place when forces of electrons take place attraction overcome the forces of
- repulsion 60. The correct order of increasing covalent character of the following is
 - a) $\frac{\text{SiCl}_4 < \text{AlCl}_3}{< \text{CaCl}_2 < \text{KCl}}$ b) $\frac{\text{KCl} < \text{CaCl}_2 < \text{AlCl}_3}{< \text{SiCl}_4}$ c) $\frac{\text{AICl}_3 < \text{CaCl}_2 < \text{KCl}}{< \text{SiCl}_4}$ None of the above of $\frac{1}{2}$ sicl
- 61. Hydrogen bonding is maximum in
 a) ethyl chloride
 b) triethyl amine
 c) ethanol
 d) diethyl ether
 62. What is the bond order of B₂ molecule?
- a) 3 b) 0 c) 1 d) 2
- 63. The bond dissociation energy of B F in BF_3 is 646 kJ mol⁻¹, whereas that of C - F in CF_4 is 515 kJ mol⁻¹. The correct reason for higher B - F bond dissociation energy as compared to that of C-F is a) smaller size of B- stronger σ -bond
 - atom as compared to between B and F in that of C-atom b) BF₃ as compared to that between C and F is CF₄

significant $p\pi - p\pi$ interaction between B and F in BF₃ c) whereas there is no possibility of such interaction between C and F in CF₄ lower degree of $p\pi - p\pi$ interaction between B and F in BF₃ than that of between C and F in CF₄.

N.B.Navale

Date: 01.04.2025Time: 00:56:42Marks: 63

TEST ID: 69 CHEMISTRY

CHEMICAL BONDING AND MOLECULAR STRUCTURE

: ANSWER KEY :								
1)	b	2)	b	3)	b	4)	С	
5)	С	6)	С	7)	b	8)	b	
9)	С	10)	d	11)	а	12)	b	
13)	d	14)	С	15)	b	16)	d	
17)	d	18)	b	19)	а	20)	а	
21)	С	22)	b	23)	а	24)	С	
25)	С	26)	b	27)	С	28)	С	
29)	b	30)	d	31)	d	32)	d	
33)	b	34)	b	35)	а	36)	d	
37)	d	38)	b	39)	а	40)	b	
41)	а	42)	b	43)	b	44)	b	
45)	с	46)	b	47)	b	48)	b	
49)	b	50)	а	51)	b	52)	а	
53)	а	54)	d	55)	d	56)	b	
57)	d	58)	b	59)	С	60)	b	• ()*
61)	с	62)	с	63)	с			

N.B.Navale

Date: 01.04.2025Time: 00:56:42Marks: 63

TEST ID: 69 CHEMISTRY

CHEMICAL BONDING AND MOLECULAR STRUCTURE

: HINTS AND SOLUTIONS :

Single Correct Answer Type

1 (b)

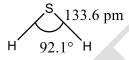
 $(a)NF_3 \Rightarrow 3bp + 1/p \Rightarrow pyramidal$

 $BF_3 \Rightarrow 3bp + 0/p \Rightarrow$ trigonal planar

 $(b)BF_4^- \Rightarrow 4bp + 0/p \Rightarrow tetrahedral$

 $NH_4^+ \Rightarrow 4bp + 0/p \Rightarrow tetrahedral$

(c)BCl₃ \Rightarrow 3bp + 0/p \Rightarrow trigonal planar


 $BrCl_3 \Rightarrow 3bp + 2/p \Rightarrow T$ -shaped

(d) $NH_3 \Rightarrow 3bp + 1/p \Rightarrow pyramidal$

 $NO_3^- \Rightarrow 3bp + 0/p \Rightarrow$ trigonal planar

2 **(b)**

The H - S - H bond angle in H_2S is 92.1° which is slightly lesser than the tetrahedral angle. As sulphur is less electronegative and hence less repulsion is present.

3 **(b)**

As the number of lone pairs of electrons increases, bond angle decreases. Therefore, the order of bond angle $NH_4^+ > NH_3 > NH_2$

Nolp 1/p 2/p

4 **(c)**

 O_2^+ contains one unpaired electron and therefore it has bond order of 2.5, while O_2 contains only 2 unpaired electrons. So, it posses bond order of 2.

5 (c)

Resonance energy;

 $\Delta_{H-F} = (BE)_{H-F} - \sqrt{(BE)_{H_2}(BE)_{F_2}}$

 $= 135 - \sqrt{104 \times 38}$

 $= 135 - 62.86 = 72.14 \text{ kcal mol}^{-1}$

6 **(c)**

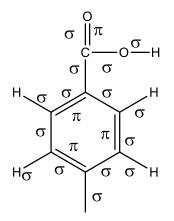
MOEC of CN[6 + 7 = 13] = $\sigma 1s^2$, $\sigma^* s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\pi 2p_x^2 \approx \pi 2p_y^2$, $\sigma 2p_z^1$

One unpaired electron present on HOMO (highest occupied molecular orbital). Hence, loss of electron from unpaired HOMO give stable electronic configuration.

(b)

7

Since, C - H bond have less difference in their electronegativities as compared to C - O,


C - C and C - N bonds.

This results in less polarity of C - H bond and thus, have maximum bond length.

(b)

8

The number of pi- bonds present in benzoic acid molecule are 4 (four). Structure of benzoic acid is as follows :

 4π -bond, 15σ -bond

9 **(c)**

: Covalent character

$$\propto \frac{1}{\text{lonic character}}$$

Difference in electronegativity

 \therefore C – S is the most covalent.

10 **(d)**

Correct decreasing order of the repulsive interection of electron pairs in a molecule is,

lone pair- lone pair > lone pair-bond pair > bond pair-

The bond pairs of electrons is shared by two atoms whereas the lone pair of electrons is only under the influence of central atom. So, the electron cloud of lone pair occupies more space as compared the bond pair. This causes greater repulsion between the lone pair-lone pair.

11 (a)

Geometry of a molecule can be predicted by using the formula

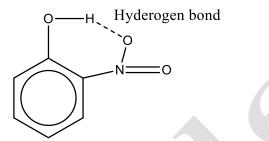
$$H = \frac{1}{2}[VE + V - C + A]$$

VE = valence shell electrons of the central atom

V = number of monovalent atom, C = total positive charge, A = total negative charge In case of H₂O molecule,

 $H = \frac{1}{2}[6 + 2 - 0 + 0] = 4$

Hybridisation of H_2O molecule comes out to be sp^3 . Thus the geometry of H_2O molecule is tetrahedral but the shape is distorted tetrahedral or angular due to presence of two lone pair of electrons.

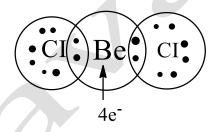

Geometry - tetrahedral shape Angular

12 **(b)**

ln BF₃, H = $\frac{3+3}{2}$ = 3(sp²) In SO₃, H = $\frac{6+0}{2}$ = 3(sp²)

13 **(d)**

Intramolecular hydrogen bonding is found in O nitro phenol the hydrogen bonding is between hydrogen of - OH group and oxygen of - NO_2 group which result decrease in its boiling point.



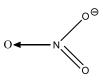
o-nitrophenol

14 **(c)**

Here Be has

```
4e<sup>-</sup> instead of 8e<sup>-</sup> and hence it violets the octet ru
```


For BeCl₂, H = $\frac{2+2}{2}$ = 2


 \Rightarrow Hybridisation = sp \Rightarrow Linear shape

15 **(b)**

Ip-bp repulsion is maximum in H_2 Te due to least electronegativity of Te and minimum in H_2 O due to high electronegativity of O.

16 **(d)**

For NO_3^- ion,

Bond pairs = $4(3\sigma + 1\pi)$ and lone pair = 0

17 **(d)**

Liquid HCl does not form H- bond.

18 **(b)**

Dipole moment $(\mu) = q \times a$

or
$$q = \frac{\mu_{HCl}}{d}S = \frac{1.03 \times 10^{-18} \text{ esu cm}}{127 \times 10^{-10} \text{ cm}}$$

$$= 0.81 \times 10^{-10}$$
 esu

Fractional charge (δ) = $\frac{q}{e} = \frac{0.81 \times 10^{-10} \text{ esu}}{4.8 \times 10^{-10} \text{ esu}} = 0.168$

Dipole moment $\mu_{HI} = \frac{0.38 \times 10^{-18} \text{ esu cm}}{161 \times 10^{-10} \text{ cm}}$

$$= 0.236 \times 10^{-10}$$
esu

Fractional charge (δ) = $\frac{0.236 \times 10^{-10} \text{esu}}{4.8 \times 10^{-10} \text{esu}}$

= 0.049

Ratio of partial positive charge on HCl and HI

$$=\frac{0.168}{0.049}=3.42:1$$

19 (a)

For NO₃⁻ion, number of electrons

$$= 7 + 3 \times 8 + 1 = 32$$

$$H = \frac{V + Y - C + A}{2} = \frac{5 + 1}{2} = 3$$

 \Rightarrow Hybridisation = sp²

For CO_3^{2-} ion, number of electrons = $6 + 3 \times 8 + 2 = 32$

$$H = \frac{4+2}{2} = 3 \Rightarrow Hybridisation = sp^2$$

 \therefore Both NO₃⁻ and CO₃²⁻ are isoelectronic and isostructural species.

20 **(a)**

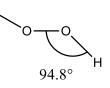
All are isostructural but NH₃ is made up of N and H. Electronegativity difference between N and H is maximum among all, hence,NH₃ has highest dipole moment.

21 **(c)**

For SiF₄,

 $\therefore \sigma$ -bond = 4, Ip = 0

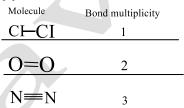
 \therefore Structure is tetrahedral.


22 **(b)**

 SiF_4 is a symmetrical tetrahedral molecule and BF_3 is a triangular planar (symmetrical) structure

and hence, have zero dipole moment.

23 **(a)**


In gas phase H - O - O - H bond angle in H_2O_2 is $94.8^{\scriptscriptstyle 0}$

24 (c)

 Br_2 is a non-polar molecule and hence, its melting point and boiling point depend only upon van der Waals' force of attraction , while all the remaining molecules have dipole moments and hence, their melting points and boiling points depend upon dipole-dipole interactions.

25 (c)

As bond multiplicity increases, bond length decreases,

26 **(b)**

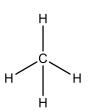
As bond order = $\frac{1}{2}(N_b - N_a)$ $\therefore N_a = N_b - 2 \times \text{bond order} = 2 - 2 \times 1/2 \text{ or}$ $N_a = 1$

27 **(c)**

For SO₃²⁻, H = $\frac{6+2}{2} = \frac{8}{2} = 4(V = 6, A = 2)$

$$SO_4^{2-}$$
, $H = \frac{6+2}{2} = 4(V = 6, A = 2)$

$$SO_5^{2-}$$
, $H = \frac{6+2}{2} = 4(V = 6, A = 2)$


All have same value of H. So, each one has sp³-hybridisation.

28 **(c)**

Strongest H- bonds are formed in between HCOOH and CH₃COOH. This is because H-bonding increases with electronegativity and decreases with size of atom.

29 **(b)**

For CH₄ molecule,

All dipole moment value of C - H bond cancel out each other. Hence, $\mu = 0$.

30 **(d)**

Higher the bond order, higher is its bond energy.

NO+ NO NO-

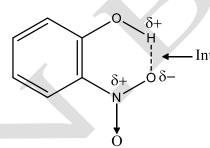
Bond order 3 2.5 2.0

31 (d)

Percentage ionic character

$$= [16(X_{Cl} - X_{Cs}) + 3.5(X_{Cl} - X_{Cs})^2]$$

 $= [16(3.0 - 0.8) + 3.5(3.0 - 0.8)^2]$


 $= [16 \times 2.2 + 3.5 \times (2.2)^2] = [35.2 + 16.94]$ = 52.14%

32 **(d)**

Since, MX_4 is tetrahedral, therefore total number of $\angle XMX$ is six.

33 **(b)**

Three is intramolecular H-bonding in onitrophenol and thus, solubility in water is decreased

34 **(b)**

Bond angle of H_2 S is smallest, because S-atom is larger in size and has low electronegativity.

35 (a)

Number of electrons in $NO^- = 7 + 8 + 1 = 16$

 \therefore MOEC of NO⁻ =

$$\begin{split} &\sigma 1 \; s^2, \sigma^* 1 \; s^2, \sigma 2 \; s^2,^* \; \tilde{\sigma} 2 \; s^2, \sigma 2 p_z^2, \\ &\pi 2 p_x^2 \approx \pi 2 p_y^2, \pi^* 2 p_x^1 \approx \pi^* 2 p_y^1 \end{split}$$

Hence, paramagnetic due to the presence of unpaired electron in $\pi 2p_x$ and $\pi 2p_y$ orbitals.

36 **(d)**

Given, $\Delta H^\circ = -83 \text{ kJ}$

 $\Delta H^{\circ}(H - H) = 435 \text{ kJ}$

 $\Delta H^{\circ}(N-H) = 389 \text{ kJ}$

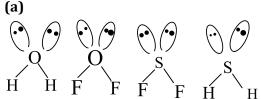
We know that, $\Delta H^{\circ} =$ bond enthalpy of reactant

– bond enthalpy of product

$$\Delta H^{\circ} = (BE \text{ of } N \equiv N + 3 \times BE \text{ of } H - H) - (6 \times BE \text{ of } N - H)$$

$$-83 = (BE \text{ of } N \equiv N + 3 \times 435) - (6 \times 389)$$

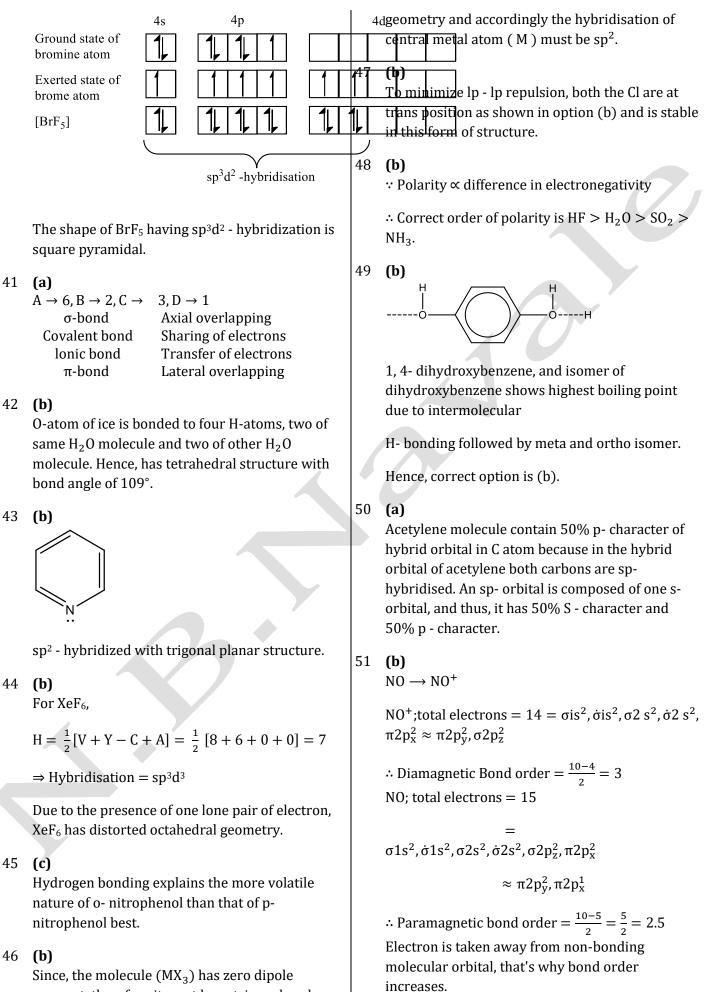
$$-83 = BE \text{ of } N \equiv N + 1305 - 2234$$


$$\Rightarrow$$
 Be of N \equiv N = 946 k

37 (d)

 N_2 has BO = 3

So, it will require maximum energy for decomposition.



- Intramolecular H-bonding H₂O has more bond angle than OF₂ due to bent rule. OF₂ has greater bond angle than SF₂ due to Drago rule, according to which, on moving top to bottom along a group, bond angle decreases.

40 **(b)**

The shape of BrF_5 molecule is square pyramidal. It has sp^3d^2 - hybridization using VBT theory.

52 **(a)**

- (a) $SF_4 = 4bp + 1/p = sp^3d$ -hybridisation
- (b) $IF_5 = 5bp + 1/p = sp^3d^2$ -hybridisation
- (c) $NO_2^+ = 2bp + 0/p = sp-hybridisation$
- (d) $NH_4^+ = 4bp + 0/p = sp^3 hybridisation$

53 **(a)**

 $SF_4(sp^3d)$, $CF_4(sp^3)$ and $XeF_4(sp^3d^2)$ contain 1,0 and 2 lone pairs, respectively. Therefore, their shapes are also different.

54 **(d)**

MOEC of

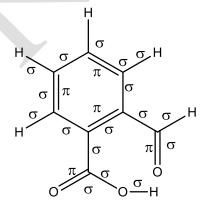
$$\begin{split} B_2(10) &= \sigma s^2, \sigma^* \ 1s^2, \sigma 2s^2, * \ 2s^2, \pi 2p_x^1, \approx \pi 2p_y^1 \\ \text{MOEC of } O_2(16) &= \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, * 2s^2, \sigma 2p_z^2, \\ \pi 2p_x^2 &\approx \pi 2p_z^2, \ \pi 2p_x^1 \approx \pi 2p_y^* \end{split}$$

MOEC of NO (15) = $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \pi 2p_x^2 \approx$

 $\pi 2p_v^2, \pi 2p_x^1 \approx \pi 2p_v$

Due to the presence of unpaired electron, B_2 , O_2 and NO all are paramagnetic.

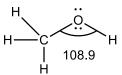
55 **(d)**


Xe-atom has 8 electrons in its outermost shell. In
case of XeF_2 , out of these 8 electrons 2 are used
for bond formation, while 3 pairs remains as such,
i.e. it has 3 lone pairs. In case of XeF_4 , 4 electrons
of Xe are used for bonding, therefore number of
lone pairs (non-bonding electrons) is 2 . In case of
 XeF_6 , 6 electrons are involved for bond formation,
thus, number of lone pair is only one.61

56 **(b)**

The d_{zx} orbital is involved in sp^3d -hybridisation.

57 (d)


Structure of 2- formyl benzoic acid is

Thus, it has 17 σ and 5 π bonds.

58 **(b)**

The value of C - O - H bond angle in CH_3 - OH (methanol) is 108.9° due to repulsion between lone pair electrons of oxygen atom. It can be easily shown as below :

59 **(c)**

A chemical bond is formed when forces of attraction are greater than the forces of repulsion.

60 **(b)**

EN difference in $SiCl_4 = 3.0 - 1.8 = 1.2$

in $AlCl_3 = 3.0 - 1.5 = 1.5$

in $CaCl_2 = 3.0 - 1.0 = 2.0$ and in KCl = 3.0 - 0.8 = 2.2

 \therefore KCl < CaCl₂ < AlCl₃ < SiCl₄

This order is also obtained by applying Fajans' rule.

i.e. covalent character \propto charge on ion.

l (c)

Hydrogen bonding is maximum in ethanol.

62 **(c)**

The bond order of B_2 molecule is 1, The ground state electron configuration of B is $1s^22s^22p^1$. So,

 $\rm B_2$ molecule has a total of ten electrons, which are arranged in MOs.

$$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 \left(\pi_{2p_y^1} = \pi_{2p_y^1} \right)$$

Bond order = $\frac{1}{2}$ (Number of bonding electrons

-number of anti-bonding

electrons)

$$=\frac{1}{2}(6-4)=1$$

63 **(c)**

In BF_3 there is significant $p\pi - p\pi$ interaction between unshared p-orbital (having no electron) over boron and the lone pair of electron over

fluorine in 2p-orbital.